Application of Double-stranded RNA (dsRNA) Produced by E. coli HT115 (DE3) and Vector L4440 in Reverse Genetics Studies in Insects

Document Type : Review Article

Author

Department of Plant and Animal Biology , Faculty of Biological Science and Technology, University of Isfahan, Isfahan, IRAN

Abstract

RNA interference is a cellular process for regulating gene expression by double-stranded RNA (dsRNA). In the past two decades, this cellular process has been used as a tool for the temporary knockdown of gene expression to study gene function in reverse genetics studies. In this regard, double-stranded RNA has been made in various ways and used to knock down the corresponding gene. In the past decade, the potential of the technique for insect pest management has become clear although the costs associated with the production of dsRNA are not reasonable and affordable for such use. Even on the laboratory scale, making the dsRNA for RNAi experiments using dsRNA production kits is not affordable for most researchers and laboratories. Therefore, researchers are focused on ways to make the production of dsRNA more affordable. The conventional method of carrying out RNAi experiments uses a vector called pL4440 and a host strain of E. coli called HT115 (DE3) to make dsRNA. This method which is called bacterium-mediated RNAi (bmRNAi) has been used successfully for the knockdown of many genes in Caenorhabditis elegans. However, the number of studies that used this technique so far in insects is limited to a few major insect orders, namely Coleoptera, Lepidoptera, Diptera, and Hymenoptera. In this review, the bmRNAi technique is discussed in detail and the studies successfully conducted using this technique are introduced.

Keywords


Ahn SJ, Donahue K, Koh Y, Martin RR, Choi MY. 2019. Microbial-based double-stranded RNA production to develop cost-effective RNA interference application for insect pest management. Int J Insect Sci, 11: 1-8. 117954331984032.
Ali N, Datta SK, Datta K. 2010. RNA interference in designing transgenic crops. GM Crops 1(4): 207-213.
Andersen J, Krichevsky A, Leheste JR, Moloney D.J. 2008. Caenorhabditis elegans as an undergraduate educational tool for teaching RNAi. Biochem Mol Biol Educ, 36(6): 417-427.
Bento FM, Marques RN, Campana FB, Demétrio CG, Leandro RA, Parra JRP, …, Figueira A. 2020. Gene silencing by RNAi via oral delivery of dsRNA by bacteria in the South American tomato pinworm, Tuta absoluta. Pest Manag Sci, 76(1): 287-295
Caccia S, Astarita F, Barra E, Di Lelio I, Varricchio P, Pennacchio F. 2020. Enhancement of Bacillus thuringiensis toxicity by feeding spodoptera littoralis larvae with bacteria expressing immune suppressive dsRNA. J Pest Sci, 93(1): 303-314.
Chomczynski P, Sacchi N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem, 162(1): 156-159.
Dasgupta S, Fernandez L, Kameyama L, Inada T, Nakamura Y, Pappas A, …,Cour D.L. 1998. Genetic uncoupling of the dsRNA-binding and RNA cleavage activities of the Escherichia coli endoribonuclease RNase III the effect of dsRNA binding on gene expression. Mol Microbiol, 28(3): 629-640.
Diaz-Ruiz JR, Kaper JM. 1978. Isolation of viral double-stranded RNAs using a LiCl fractionation procedure. Prep Biochem, 8(1): 1-17.
Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. 1998. Potent and specific genetic interference by double-stranded RNA in caenorhabditis elegans. Nature, 391(6669): 806-811
Ganbaatar O, Cao B, Zhang Y, Bao D, Bao W, Wuriyanghan H. 2017. Knockdown of Mythimna separata chitinase genes via bacterial expression and oral delivery of RNAi effectors. BMC Biotech, 17(1):1-11
Green R, Rogers EJ. 2013. Chemical Transformation of E. coli. Methods Enzymol 529: 329. Doi:10.1016/B978-0-12-418687-3.00028-8
Hammond SM, Caudy AA, Hannon GJ. 2001. Post-transcriptional gene silencing by double-stranded RNA. Nat Rev Genet, 2(2): 110-119.
Hannon G. 2002. RNA interference. Nature, 418(6894): 244-251.
Horn T, Boutros M. 2010. E-RNAi: A web application for the multi-species design of RNAi reagents-2010 update. Nucleic Acids Res. Doi:10.1093/nar/gkq317
Kim E, Park Y, Kim Y. 2015. A transformed bacterium expressing double-stranded RNA specific to integrin β1 enhances Bt toxin efficacy against a polyphagous insect pest, spodoptera exigua. Plos One, 10(7). Doi:10.1371/JOURNAL.PONE.0132631
Kim VN. 2003. RNA interference in functional genomics and medicine. J Korean Med Sci, 18(3): 309-318.
Kontogiannatos D, Swevers L, Maenaka K, Park EY, Iatrou K, Kourti A. 2013. Functional characterization of a juvenile hormone esterase related gene in the moth Sesamia nonagrioides through RNA interference. Plos One, 8(9): e73834. Doi:10.1371/journal.pone.0073834
Leelesh RS, Rieske LK. 2020. Oral ingestion of bacterially expressed dsRNA can silence genes and cause mortality in a highly invasive, tree-killing pest, the emerald ash borer. Insects, 11(7). Doi:10.3390/INSECTS11070440
Lessard JC. 2013. Growth Media for E. coli. Methods Enzymol, 533: 181–189. Doi:10.1016/B978-0-12-420067-8.00011-8
Ma ZZ, Zhou H, Wei YL, Yan S, Shen J. 2020. A novel plasmid–Escherichia coli system produces large batch dsRNAs for insect gene silencing. Pest Manag Sci, 76(7): 2505-2512.
Naqqash MN, Gökçe A, Aksoy E, Bakhsh A. 2020. Downregulation of imidacloprid resistant genes alters the biological parameters in Colorado potato beetle, Leptinotarsa decemlineata Say (chrysomelidae: Coleoptera). Chemosphere, 240: 124857. Doi:10.1016/J.chemosphere.2019.124857
Ratzka C, Gross R, Feldhaar H. 2013. Systemic gene knockdown in Camponotus floridanus workers by feeding of dsRNA. Insect Soc, 60(4): 475-484. Doi:10.1007/s00040-013-0314-6
Setten RL, Rossi JJ, Han, SP. 2019. The current state and future directions of RNAi-based therapeutics. Nat Rev Drug Discov, 18(6): 421-446.
Studier FW, Moffatt BA. 1986. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol, 189(1): 113-130.
Sturm Á, Saskoï É, Tibor K, Weinhardt N, Vellai T. 2018. Highly efficient RNAi and Cas9-based auto-cloning systems for C. elegans research. Nucleic Acids Res, 46(17): e105-e105. Doi: 10.1093/nar/gky516
Swords WE. 2003. Chemical transformation of E. coli. Methods Mol Biol 235: 49–53. Doi:10.1385/1-59259-409-3:49
Szweykowska-Kulińska Z, Jarmołowski A, Figlerowicz M. 2003. RNA interference and its role in the regulation of eucaryotic gene expression. Acta Biochim Pol, 50(1): 217-229.
Takiff HE, Chen SM., Court DL. 1989. Genetic analysis of the rnc operon of Escherichia coli. J Bacteriol, 171(5): 2581-2590.
Tian H, Peng H, Yao Q, Chen H, Xie Q, Tang B, …,Zhang W. (2009). Developmental control of a lepidopteran pest Spodoptera exigua by ingestion of bacteria expressing dsRNA of a non-midgut gene. Plos One, 4(7): e6225. Doi:10.1371/journal.pone.0006225
Timmons L, Fire A. 1998. Specific interference by ingested dsRNA. Nature, 395(6705), 854-854. Doi:10.1038/27579
Timmons Lisa, Court DL, Fire A. 2001. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene, 263(1-2): 103-112.
Vatanparast M, Kim Y. 2017. Optimization of recombinant bacteria expressing dsRNA to enhance insecticidal activity against a lepidopteran insect, Spodoptera exigua. PLos One, 12(8). Doi:10.1371/journal.pone.0183054
Verdonckt TW, Vanden Broeck J. 2022. Methods for the cost-effective production of bacteria-derived double-stranded RNA for in vitro knockdown studies. Front Physiol. Doi: 10.3389/fphys.2022.836106
Vogel E, Santos D, Mingels L, Verdonckt TW, Broeck J.V. 2019. RNA interference in insects: protecting beneficials and controlling pests. Front Physiol, 9: 1912. Doi:10.3389/fphys.2018.01912/bibtex
Wan XS, Sh MR, Xu J, Liu JH, Ye H. 2021. Interference efficiency and effects of bacterium-mediated RNAi in the fall armyworm (lepidoptera: noctuidae). J Insect Sci, 21(5): 8; 1-12
Wang XF, Chen Z, Wang XB, Xu J, Chen P, Ye H. 2021. Bacterial-mediated RNAi and functional analysis of Natalisin in a moth. Sci Rep, 11(1): 1-12.
Whyard S, Erdelyan C, Partridge AL, Singh AD, Beebe NW, Capina R. 2015. Silencing the buzz: a new approach to population suppression of mosquitoes by feeding larvae double-stranded RNAs. Parasites and Vectors, 8(1): 1-11
Yang J, Han Zj. 2014. Efficiency of different methods for dsRNA delivery in cotton bollworm (Helicoverpa armigera). J Integr Agric, 13(1), 115-123.
Zhang X, Liu X, Ma J, Zhao J. 2013. Silencing of cytochrome P450 CYP6B6 gene of cotton bollworm (Helicoverpa armigera) by RNAi. Bull Entomol Res, 103(5): 584-591.
Zhang Y, Xu L, Li S, Zhang J. 2019. Bacteria-mediated RNA interference for management of plagiodera versicolora (Coleoptera: Chrysomelidae). Insects, 10(12): 415. Doi:10.3390/insects10120415.
Zhu F, Xu J, Palli R, Ferguson J, Palli SR. 2011. Ingested RNA interference for managing the populations of the Colorado potato beetle, Leptinotarsa decemlineata. Pest Manag Sci, 67(2): 175-182.
Zhu J, Dong YC, Li P, Niu CY. 2016. The effect of silencing 20E biosynthesis relative genes by feeding bacterially expressed dsRNA on the larval development of Chilo suppressalis. Sci Rep, 6(1): 1-12.
Zhu JQ, Liu S, Ma Y, Zhang JQ, Qi HS, Wei ZJ, …, Li S. 2012. Improvement of pest resistance in transgenic tobacco plants expressing dsRNA of an insect-associated gene ECR. Plos One, 7(6): e38572. Doi:10.1371/journal.pone.0038572.