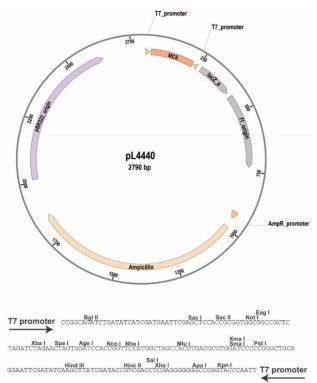
Application of Double-stranded RNA (dsRNA) Produced by E. coli HT115 (DE3) and Vector L4440 in Reverse Genetics Studies in Insects

Roohollah Abbasi*

Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran

ARTICLEINFO	A B S T R A C T		
Article history: Received 15 August 2022 Accepted 05 October 2022 Available online 23 October 2022	RNA interference is a cellular process for regulating gene expression by double-stranded RNA (dsRNA). In the past two decades, this cellular process has been used as a tool for the temporary knockdown of gene expression to study gene function in reverse genetics studies. In this regard, double-stranded RNA has been made in various ways and used to knock down the corresponding gene. In the past decade, the potential of the technique for		
<i>Keywords:</i> Bacterium-mediated RNA interference (bmRNAi) dsRNA Insect pest management Knockdown of gene expression RNA interference	insect pest management has become clear although the costs associated with the production of dsRNA are not reasonable and affordable for such use. Even on the laboratory scale, making the dsRNA for RNAi experiments using dsRNA production kits is not affordable for most researchers and laboratories. Therefore, researchers are focused on ways to make the production of dsRNA more affordable. The conventional method of carrying out RNAi experiments		
* <i>Corresponding authors:</i> ⊠ R. Abbasi r.abbasi@bio.ui.ac.ir	uses a vector called pL4440 and a host strain of <i>E. coli</i> called HT115 (DE3) to make dsRNA. This method which is called bacterium-mediated RNAi (bmRNAi) has been used successfully for the knockdown of many genes in <i>Caenorhabditis elegans</i> . However, the number of studies that used this technique so far in insects is limited to a few major insect orders, namely Coleoptera, Lepidoptera, Diptera, and Hymenoptera. In this review, the		
p-ISSN 2423-4257 e-ISSN 2588-2589	bmRNAi technique is discussed in detail and the studies successfully conducted using this technique are introduced. © 2023 University of Mazandaran		

Please cite this paper as: Abbasi R. 2023. Application of double-stranded RNA (dsRNA) produced by E. coli HT115 (DE3) and vector L4440 in reverse genetics studies in insects. J Genet Resour 9(1): 41-47. doi: 10.22080/jgr.2022.24326.1332


Introduction

In 1998, Andrew Fire and Craig Mello announced that double-stranded RNAs (dsRNA) Post-Transcriptional Gene Silencing cause (PTGS) in the nematode Caenorhabditis elegans, and called this phenomenon RNA interference or RNAi for short (Fire et al., 1998). phenomenon explained confusing This observations of gene silencing in plants and fungi and started a revolution in biology leading to the conclusion that non-coding RNAs are the regulators of gene expression main in Eukaryotes (Setten et al., 2019). Since the bacteria are the dominant diet of C. elegans in the laboratory, engineered bacteria to produce dsRNA have been used to provide dsRNA to

them (Timmons and Fire, 1998). A cloning vector L4440 (pPD129.36), containing two convergent T7 polymerase promoters in opposite directions separated by a multiple cloning site (MCS), has been constructed (Fig. 1) (Timmons and Fire, 1998). The vector has been used in an E. coli strain (BL21/DE3; (Studier and Moffatt, 1986)) expressing bacteriophage lambda T7 polymerase gene from an inducible promoter (Lac) (Timmons and Fire, 1998). Despite the observation of specific interference in the studies conducted with dsRNA-producing bacteria, which indicated the suitability of ingested dsRNA, limited phenotypes were observed in terms of penetration and expression. Therefore, increasing the efficiency of this technique in various ways has been the subject of subsequent studies. These studies showed that a strain of bacterium lacking specific dsRNA endonuclease, known as RNaseIII (rnc-), can be cultivated to produce high amounts of specific dsRNA. Also, these bacteria can effectively induce strong and target gene-specific phenotypic responses during feeding assays in C. elegans (Timmons et al., 2001). This effective strain was HT115 (DE3), constructed by deleting the rnc gene from the W3110 strain with T7 RNA polymerase under an **IPTG-inducible** promoter derived from bacteriophage $\lambda DE3$ (Studier and Moffatt, 1986) and tetracycline resistance (Tn10) (genotype: HT115: W3110, rnc14::ΔTn10) (Dasgupta *et al.*, 1998; Takiff et al., 1989). After introducing the combination of vector L4440 and host strain HT115 (DE3) as the most effective combination in the production of dsRNA in the study of RNAi in C. elegans (Timmons et al., 2001), this method became a conventional method in such studies. In this review, we will briefly introduce the process of RNAi in general, and in particular, bacteria-mediated will focus on **RNAi** (bmRNAi) and the studies conducted using this technique on insects.

Environmental RNA interference process

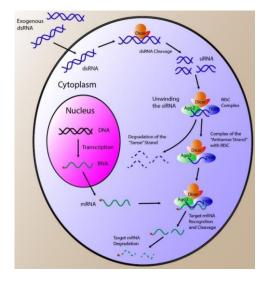

The process of RNA interference can be divided into four steps: (1) cleavage of long doublestranded RNA by Dicer, (2) formation of the RNA Induced Silencing Complex (RISC), (3) unwinding of the double-stranded siRNA and activation of the silencing complex, as well as (4) cutting and destroying target mRNA (Kim, 2003; Szweykowska-Kulińska et al., 2003). The first step of the environmental RNAi process begins with the delivery of long exogenous dsRNA whose sequence is completely homologous to the target RNA sequence. The dicer enzyme recognizes dsRNA and typically cuts it into 21-25 nucleotide fragments (Hannon, 2002) of double-stranded siRNA, depending upon the species, in a reaction dependent on ATP energy. In the second step, Dicer-cleaved siRNAs are incorporated into the inactive RNA-Induced Silencing Complex (RISC), a multicomponent nuclease complex. In the third step, in an ATP-dependent process, the enzyme helicase opens up the two strands of siRNA and activates the RISC. In the final step the RISC, coupled with an antisense strand of siRNA, tracks down the target mRNA and cuts it into 22 nucleotides long fragments (Fig. 2). After the completion of cleavage, the RISC-siRNA complex is dissociated and the released siRNA can repeat the mRNA recognition and cleavage cycle (Ali *et al.*, 2010; Hammond *et al.*, 2001; Hannon, 2002).

Fig. 1. Map of L4440. The empty RNAi vector (L4440) is a modified version of pBluescript with convergent T7 promoters on each side of a 185 base pairs (bp) Multiple Cloning Site (MCS) (bottom sequence of the fig.) that directs the transcription of RNA from both DNA strands (Andersen *et al.*, 2008). It is worth mentioning that a newer version of this vector has been made with T7 terminators upstream of the promoters (Sturm *et al.*, 2018).

Studies conducted on insects using bmRNAi

E. coli strain HT115 (DE3) was first transformed with the L4440 vector in 2001 and since then, it has become a useful tool for RNA interference experiments in invertebrates (Timmons *et al.*, 2001). The studies conducted using this method in insects and the methods of providing dsRNA to different insects are summarized in Table 1, showing the effectiveness of this inexpensive dsRNA production and delivery method in the four major orders of insects, namely Coleoptera (beetles and weevils), Lepidoptera (moths and butterflies), Diptera (true flies) and Hymenoptera (wasps, bees and ants). Currently, the production of dsRNA by fermentation is considered the cheapest method. The lack of data on the effectiveness of this inexpensive dsRNA production and delivery method and the importance of the remaining insect orders from different perspectives, including pest control and gene function analysis, emphasizes the necessity of conducting such studies. The potential pathogenicity of *E. coli* for several insect species shows that if this method is used in pest control, beneficial insects can also be negatively affected by the use of this delivery system (Vogel *et al.*, 2019). Considering that in some of the reviewed studies, the dsRNA-producing bacteria added to the diet has shown better efficiency, and in others purified dsRNA, the delivery method may be different depending on the insect species.

Fig. 2. Mechanism of environmental RNA interference. In this phenomenon, foreign long dsRNA enters the cell and typically is converted into smaller pieces of 21-25 nucleotides by the Dicer enzyme, which is called siRNA. The siRNA molecules are then placed in an RNA-Induced Silencing Complex (RISC) and the two strands are separated. The complementary strand of the target mRNA is kept as a guide in the complex and the non-complementary strand is left and degraded. Then, by finding the target mRNA and matching the sequence, the complex proceeds to cut the target mRNA. The cleaved mRNA is then targeted and degraded by the nucleases of the cell.

Step-by-step process of bmRNAi

The step-by-step process of conducting an RNA interference experiment with bacterial dsRNA is briefly mentioned in the following.

1- Designing the best possible double-stranded RNA specific to the target gene and organism in order to increase the knockdown efficiency: E-RNAi website is one of the online tools for dsRNA design. By providing the sequence or Accession Number of the desired gene, it suggests the best part of the sequence for making dsRNA and provides relevant primers (Horn and Boutros, 2010).

2- Selecting restriction enzymes according to the designed sequence and the multiple cloning sites (MCS) on the L4440 vector (Fig. 1) and adding the restriction site of these enzymes along with 3

additional A nucleotides at the 5' end of the primers from step 1 to create enough binding space for the restriction enzymes (Ahn *et al.*, 2019). The selected restriction enzymes should not have cut sites on the designed sequence. It is worth mentioning that it is better to choose restriction enzymes whose cut site in the vector map has the shortest distance from the T7 promoter (the target sequence must lack these cut sites). In this way, a large part of the MCS will be removed in the cloning process and fewer extra sequences will be built into the dsRNA. 3- Extracting RNA from the studied insect,

synthesizing cDNA, and performing PCR using the primers designed in step 2 and doing PCR product clean-up.

Insect orders	Insect species	Target gene	dsRNA delivery method	References
Lepidoptera	Spodoptera	Chitin synthase A	coated food with a suspension of	(Tian et al., 2009)
	exigua		live bacteria	
	Sesamia	Juvenile hormone esterase	coated food with a suspension of	(Kontogiannatos et al.,
	nonagrioides		live bacteria	2013)
	Helicoverpa	cytochrome P450 CYP6B6	dsRNA extracted from bacteria	(Zhang et al., 2013)
	armigera			
	Helicoverpa	Ultraspiracle protein	coated food with a suspension of	(Yang and Han, 2014)
	armigera		bacteria, dsRNA extracted from	
			bacteria	
	Spodoptera	Integrin β1	coated food with a suspension of	(Kim et al., 2015)
	exigua		live bacteria, heat-killed bacteria,	
			and damaged bacteria by sonication	
	Chilo	ptth, torso, spook and nm-g	dsRNA extracted from bacteria	(Zhu et al., 2016)
	suppressalis			
	Mythimna	chitinase	coated food with a suspension of	(Ganbaatar <i>et al.</i> , 2017)
	separata		live bacteria	
	Spodoptera	Chymotrypsin 2	coated food with a suspension of	(Vatanparast and Kim,
	exigua		heat-killed bacteria and damaged	2017)
			bacteria by sonication	
	Spodoptera	Sl 102	coated food with a suspension of	(Caccia et al., 2020)
	littoralis		killed bacteria by sonication using	
			an ultrasound homogenizer	
	Tuta absoluta	Juvenile hormone inducible	coated food with a suspension of	(Bento et al., 2020)
		protein, Chintin synthase A,	live bacteria	
		Carboxylesterase, Arginine		
		kinase		
	Spodoptera	Chitinase, Chitin synthase B,	coated food with a suspension of	(Wan et al., 2021)
	frugiperda	Sugar transporter SWEET1,	live bacteria	
		and Hemolin		
	Spodoptera litura	Natalisin	dsRNA extracted from bacteria	(Wang et al., 2021)
	Helicoverpa	Dicer2	dsRNA extracted from bacteria with	(Verdonckt and Vanden
	armigera	Diceiz	various methods	Broeck, 2022)
Coleoptera	Leptinotarsa	b-actin, Protein transport	dsRNA extracted from bacteria	(Zhu <i>et al.</i> , 2011)
concopiera	decemlineata	protein sec23, Coatomer	disterver extracted from bacteria	(End <i>et ut.</i> , 2011)
Helic armig Plagi versic Leptin decen Agrilı planij Harm	uecemineuiu	subunit beta		
	Helicoverpa	ecdysone receptor	dsRNA extracted from bacteria	(Zhu et al., 2012)
	armigera	eeuysone receptor		(End er un., 2012)
	Plagiodera	actin, signal recognition	coated food with a suspension of	(Zhang et al., 2019)
	versicolora	particle protein 54k, heat	bacteria	(g er an, 2017)
		shock protein 70, shibire,		
		cactus, soluble N-		
		ethylmaleimide-sensitive fusion		
		attachment proteins		
	Leptinotarsa	cuticular protein, cytochrome	coated food with a suspension of	(Naqqash et al., 2020)
	decemlineata	P450 monoxygenases,	live bacteria	(14494311 17 41., 2020)
	accontineata	glutathione synthetase	nve bueteriu	
	Aorilus	shibire, heat shock protein-	coated food with a suspension of	(Leelesh and Rieske,
	planipennis	70kDA	live bacteria	(Leelesh and Kleske, 2020)
	Harmonia	vestigial	dsRNA extracted from bacteria	(Ma <i>et al.</i> , 2020)
	axyridis	. congree	dora na extracted from Dictoria	(
Diptera	Aedes aegypti	doublesex	coated food with a suspension of	(Whyard et al., 2015)
	neues uegypti	uononoson	live and heat-killed bacteria	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	Drosophila	pyrokinin	dsRNA extracted from pretreated	(Ahn et al., 2019)
	suzukii	FJISMIN	bacteria with sonication or heat	(1 ann cr un, 2017)
Hymenoptera	Camponotus	peptidoglycan recognition	dsRNA extracted from bacteria	(Ratzka et al., 2013)
nymenoptera	floridanus	proteins, PGRP-LB and	dora na extracted from Dictoria	(1. million (1 m., 2013)
	Jonaanas	rioremo, i ora Lo unu		

Table 1. Studies conducted on insects by bmRNAi approach using *E. coli* strain HT115 (DE3) and vector L4440.

4- Enzymatic digestion of L4440 vector and the pure PCR product and performing agarose gel electrophoresis followed by purification of the fragments. Ligation of the purified linearized L4440 vector and the PCR product to create a recombinant vector.

5- Making chemically competent *E. coli* strain HT115 (DE3) (Green and Rogers, 2013; Swords, 2003) and transforming it by recombinant L4440 vector using heat shock treatment of 42 °C for 40 seconds. Culturing the transformed *E. coli* in super optimal broth with catabolite repression

(SOC) medium (Lessard, 2013) for 1 hour and 30 minutes. Finally, transferring 150 ul of culture into an LB medium plate containing tetracycline (12.5 μ g/ml) and ampicillin (50 μ g/ml) and incubating at 37 degrees overnight.

6- Selecting individual colonies and doing direct colony PCR using primers pL4440F (ACCTGGCTTATCGAA) and pL4440R (TAAAACGACGGCCAGT) (Whyard *et al.*, 2015) followed by agarose gel electrophoresis to confirm the success of the process (by knowing the product size). Sequencing the fragment for complete assurance.

7- Liquid culture of the successful colony in selective LB medium containing tetracycline (12.5 μ g/ml) and ampicillin (50 μ g/ml) at 37 degrees overnight.

8- Transferring 4 milliliters of the cells to 400 milliliters of fresh selective LB Amp-Tet medium and incubating for 4 hours at 37 °C with shaking. When the Optical Density (OD) reaches higher than 0.4, bacterial cells can be induced with sterile filtered isopropyl β-d-1thiogalactopyranoside (IPTG) to а final concentration of 1 mM and then incubated for another 5 hours under the same conditions. At this stage, the bacteria contain dsRNA and are ready to be delivered to insects in different ways. 9- If it is necessary to purify dsRNA from bacteria, the cells are pelleted by centrifugation (4000 relative centrifugal force (rcf) for 10 minutes at 4 °C) and suspended in 1 milliliter of distilled water and transferred to a 15 milliliters Falcon tube. To destroy the cells and release dsRNA, they are treated with various enzymatic, heat or sonication methods. Purification of dsRNA from bacteria is carried out using regular dsRNA extraction methods RNA or (Chomczynski and Sacchi, 1987; Diaz-Ruiz and Kaper, 1978) followed by enzymatic digestion of DNA and single-stranded RNA; or selective precipitation of dsRNA (Verdonckt and Vanden Broeck, 2022).

10- Delivering the dsRNA to the studied insect in various ways, including overlaying the insect's food in a suspension of live or killed bacteria, extracting and purifying dsRNA by enzymatic or selective precipitation methods. Then evaluating effects of dsRNA on insect by phenotypic assay and/or real-time PCR assay.

Conclusion

The RNA interference technique is considered an efficient, cheap, and quick method in gene function analysis studies. This method is especially important in organisms that are not considered as model organism since the genetic tools for gene function analysis are not available in these organisms. After the introduction of this phenomenon and using it, in a short period of time, the potential of this technique for insect control became clear and studies were directed in that direction. The bottleneck of using the RNA interference technique in insect control and management is the high cost of dsRNA production on a large scale; therefore, efforts are underway to make dsRNA production cheaper on this scale. The bmRNAi is considered the cheapest method of RNAi. Considering that the bmRNAi studies conducted are limited to only four large orders of insects, it is necessary to prove the effectiveness of this technique and delivery method in other insect orders as well.

Acknowledgments

This study was supported by the award of the late Dr. Kazemi Ashtiani of the National Elite Foundation for young assistant professors and the financial support of the University of Isfahan. The author would like to thank the editor and three anonymous reviewers for their useful comments and suggestions.

References

- Ahn SJ, Donahue K, Koh Y, Martin RR, Choi MY. 2019. Microbial-based double-stranded RNA production to develop cost-effective RNA interference application for insect pest management. *Int J Insect Sci* 11: 1179543319840323. doi: 10.1177/1179543319840323
- Ali N, Datta SK, Datta K. 2010. RNA interference in designing transgenic crops. *GM Crops* 1(4): 207-213.
- Andersen J, Krichevsky A, Leheste JR, Moloney D.J. 2008. Caenorhabditis elegans as an undergraduate educational tool for teaching RNAi. *Biochem Mol Biol Educ* 36(6): 417-427.
- Bento FM, Marques RN, Campana FB, Demétrio CG, Leandro RA, Parra JRP, ..., Figueira A.

2020. Gene silencing by RNAi via oral delivery of dsRNA by bacteria in the South American tomato pinworm, Tuta absoluta. *Pest Manag Sci* 76(1): 287-295

- Caccia S, Astarita F, Barra E, Di Lelio I, Varricchio P, Pennacchio F. 2020. Enhancement of *Bacillus thuringiensis* toxicity by feeding spodoptera littoralis larvae with bacteria expressing immune suppressive dsRNA. *J Pest Sci* 93(1): 303-314.
- Chomczynski P, Sacchi N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. *Anal Biochem* 162(1): 156-159.
- Dasgupta S, Fernandez L, Kameyama L, Inada T, Nakamura Y, Pappas A, ...,Cour D.L. 1998. Genetic uncoupling of the dsRNAbinding and RNA cleavage activities of the *Escherichia coli* endoribonuclease RNase III the effect of dsRNA binding on gene expression. *Mol Microbiol* 28(3): 629-640.
- Diaz-Ruiz JR, Kaper JM. 1978. Isolation of viral double-stranded RNAs using a LiCl fractionation procedure. *Prep Biochem* 8(1): 1-17.
- Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. 1998. Potent and specific genetic interference by doublestranded RNA in caenorhabditis elegans. *Nature* 391(6669): 806-811
- Ganbaatar O, Cao B, Zhang Y, Bao D, Bao W, Wuriyanghan H. 2017. Knockdown of Mythimna separata chitinase genes via bacterial expression and oral delivery of RNAi effectors. *BMC Biotech* 17(1):1-11
- Green R, Rogers EJ. 2013. Chemical transformation of *E. coli. Methods Enzymol* 529: 329. doi:10.1016/B978-0-12-418687-3.00028-8
- Hammond SM, Caudy AA, Hannon GJ. 2001. Post-transcriptional gene silencing by doublestranded RNA. *Nat Rev Genet* 2(2): 110-119.
- Hannon G. 2002. RNA interference. *Nature*, 418(6894): 244-251.
- Horn T, Boutros M. 2010. E-RNAi: A web application for the multi-species design of RNAi reagents-2010 update. *Nucleic Acids Res* doi:10.1093/nar/gkq317
- Kim E, Park Y, Kim Y. 2015. A transformed bacterium expressing double-stranded RNA specific to integrin β1 enhances Bt toxin

efficacy against a polyphagous insect pest, spodoptera exigua. *Plos One* 10(7). doi:10.1371/JOURNAL.PONE.0132631

- Kim VN. 2003. RNA interference in functional genomics and medicine. *J Korean Med Sci* 18(3): 309-318.
- Kontogiannatos D, Swevers L, Maenaka K, Park EY, Iatrou K, Kourti A. 2013. Functional characterization of a juvenile hormone esterase related gene in the moth Sesamia nonagrioides through RNA interference. *Plos One* 8(9): e73834. doi:10.1371/journal.pone.0073834
- Leelesh RS, Rieske LK. 2020. Oral ingestion of bacterially expressed dsRNA can silence genes and cause mortality in a highly invasive, tree-killing pest, the emerald ash borer. *Insects*, 11(7): 440. doi:10.3390/INSECTS11070440
- Lessard JC. 2013. Growth Media for *E. coli. Methods Enzymol* 533: 181-189. doi:10.1016/B978-0-12-420067-8.00011-8
- Ma ZZ, Zhou H, Wei YL, Yan S, Shen J. 2020. A novel plasmid–*Escherichia coli* system produces large batch dsRNAs for insect gene silencing. *Pest Manag Sci* 76(7): 2505-2512.
- Naqqash MN, Gökçe A, Aksoy E, Bakhsh A. Downregulation 2020. of imidacloprid genes alters the biological resistant parameters in Colorado potato beetle, decemlineata Leptinotarsa Say (chrysomelidae: Coleoptera). Chemosphere 240: 124857. doi:10.1016/J.chemosphere.2019.124857
- Ratzka C, Gross R, Feldhaar H. 2013. Systemic gene knockdown in Camponotus floridanus workers by feeding of dsRNA. *Insect Soc* 60(4): 475-484. doi:10.1007/s00040-013-0314-6
- Setten RL, Rossi JJ, Han, SP. 2019. The current state and future directions of RNAi-based therapeutics. *Nat Rev Drug Discov* 18(6): 421-446.
- Studier FW, Moffatt BA. 1986. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189(1): 113-130.
- Sturm Á, Saskoï É, Tibor K, Weinhardt N, Vellai T. 2018. Highly efficient RNAi and Cas9-based auto-cloning systems for *C. elegans* research. *Nucleic Acids Res* 46(17):

e105-e105. doi: 10.1093/nar/gky516

- Swords WE. 2003. Chemical transformation of *E. coli. Methods Mol Biol* 235: 49-53. doi:10.1385/1-59259-409-3:49
- Szweykowska-Kulińska Z, Jarmołowski A, Figlerowicz M. 2003. RNA interference and its role in the regulation of eucaryotic gene expression. *Acta Biochim Pol* 50(1): 217-229.
- Takiff HE, Chen SM., Court DL. 1989. Genetic analysis of the rnc operon of *Escherichia coli*. *J Bacteriol* 171(5): 2581-2590.
- Tian H, Peng H, Yao Q, Chen H, Xie Q, Tang B, ...,Zhang W. (2009). Developmental control of a lepidopteran pest *Spodoptera exigua* by ingestion of bacteria expressing dsRNA of a non-midgut gene. *Plos One*, 4(7): e6225. doi:10.1371/journal.pone.0006225
- Timmons L, Fire A. 1998. Specific interference by ingested dsRNA. *Nature* 395(6705), 854-854. doi:10.1038/27579
- Timmons Lisa, Court DL, Fire A. 2001. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in *Caenorhabditis elegans*. *Gene*, 263(1-2): 103-112.
- Vatanparast M, Kim Y. 2017. Optimization of recombinant bacteria expressing dsRNA to enhance insecticidal activity against a lepidopteran insect, *Spodoptera exigua*. *PLos One* 12(8): e0183054 doi:10.1371/journal.pone.0183054
- Verdonckt TW, Vanden Broeck J. 2022. Methods for the cost-effective production of bacteria-derived double-stranded RNA for in vitro knockdown studies. *Front Physiol* doi: 10.3389/fphys.2022.836106
- Vogel E, Santos D, Mingels L, Verdonckt TW, Broeck J.V. 2019. RNA interference in insects: protecting beneficials and controlling pests. *Front Physiol* 9: 1912. doi:10.3389/fphys.2018.01912/bibtex
- Wan XS, Sh MR, Xu J, Liu JH, Ye H. 2021. Interference efficiency and effects of

bacterium-mediated RNAi in the fall armyworm (*lepidoptera: noctuidae*). *J Insect Sci* 21(5): 8. doi: 10.1093/jisesa/ieab073.

- Wang XF, Chen Z, Wang XB, Xu J, Chen P, Ye H. 2021. Bacterial-mediated RNAi and functional analysis of Natalisin in a moth. *Sci Rep* 11(1): 1-12.
- Whyard S, Erdelyan C, Partridge AL, Singh AD, Beebe NW, Capina R. 2015. Silencing the buzz: a new approach to population suppression of mosquitoes by feeding larvae double-stranded RNAs. *Parasites and Vectors* 8(1): 1-11
- Yang J, Han Zj. 2014. Efficiency of different methods for dsRNA delivery in cotton bollworm (*Helicoverpa armigera*). J Integr Agric 13(1): 115-123.
- Zhang X, Liu X, Ma J, Zhao J. 2013. Silencing of cytochrome P450 CYP6B6 gene of cotton bollworm (*Helicoverpa armigera*) by RNAi. *Bull Entomol Res* 103(5): 584-591.
- Zhang Y, Xu L, Li S, Zhang J. 2019. Bacteriamediated RNA interference for management of plagiodera versicolora (Coleoptera: Chrysomelidae). *Insects*, 10(12): 415. doi:10.3390/insects10120415.
- Zhu F, Xu J, Palli R, Ferguson J, Palli SR. 2011. Ingested RNA interference for managing the populations of the Colorado potato beetle, Leptinotarsa decemlineata. *Pest Manag Sci* 67(2): 175-182.
- Zhu J, Dong YC, Li P, Niu CY. 2016. The effect of silencing 20E biosynthesis relative genes by feeding bacterially expressed dsRNA on the larval development of *Chilo suppressalis*. *Sci Rep* 6(1): 1-12.
- Zhu JQ, Liu S, Ma Y, Zhang JQ, Qi HS, Wei ZJ, ..., Li S. 2012. Improvement of pest resistance in transgenic tobacco plants expressing dsRNA of an insect-associated gene ECR. *Plos One* 7(6): e38572. doi:10.1371/journal.pone.0038572.