Forensic Genetic Analysis of Mitochondrial DNA Hypervariable Region III Sequences in Muslims from South India

Document Type : Research Article

Authors

1 Department of Social Science, University of Mazandaran, Babolsar, Mazandaran, Iran

2 Anthropological Survey of India, Southern Regional Centre, Bogadi, Mysore, India

10.22080/jgr.2021.20887.1239

Abstract

The absence of recombination, high rate of mutation, and maternal inheritance of the mitochondrial DNA (mtDNA) genome makes it a valuable tool in many fields including evolutionary anthropology, genetic genealogy, population history, and forensic science. The mtDNA genome can be separated into two parts: a large coding region and a smaller fragment called the control region or non-coding region that generally referred to as displacement loop (D loop). The mtDNA D-loop region was highly polymorphic and has proven a precious marker in forensic identification. The study aims to examine and suggests polymorphism of the HVRIII region as a power marker along with HVRI and HVRII in forensic investigations. Within the control region of the mtDNA genome, the sequences of hypervariable region III (HVR III) (nucleotide position 438-574) were obtained from 60 unrelated Muslims of Shrirangapattana town, located in Karnataka state of South India. The complete mtDNA control region was amplified and sequenced by the Sanger sequencing method. The study provided the identification of 18 different haplotypes and 17 polymorphic nucleotide positions. The most common haplotype (H.18) was consistent with the Anderson sequence which occurred fourteen times. The distribution of nucleotide substitutions, insertions, and deletions was computed and determined that transitions made up the majority of the variations (58%) in this region. The genetic diversity was estimated at 0.89939 and the random match probability at 0.1155. The power of discrimination was found to be 0.8844 and the rest of the statistical parameters such as the mean of pair-wise differences and nucleotide diversity were established as 2.255932 ± 1.25884 and 0.010071± 0.00623, respectively. Consequently, the discovery of high genetic, haplotype, and nucleotide diversity, and high power of discrimination impart the use of hypervariable region III (HVR III) as an important marker in forensic investigations.

Keywords


Achilli A, Olivieri A, Pala M, Metspalu E, Fornarino S, Battaglia V, Torroni A. 2007. Mitochondrial DNA variation of modern Tuscans supports the near eastern origin of Etruscans. Am J Hum Genet 80: 759-768.
Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N. 1999. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet 23: 147.
Baasner A, Schäfer C, Junge A, Madea B. 1998.  Polymorphic sites in human mitochondrial DNA control region sequences: population data and maternal inheritance. Forensic Sci Int98: 169-178.
Bhatti S, Aslam Khan M, Abbas S, Attimonelli M, Gonzalez GR, Aydin HH, de Souza EM. 2018. Problems in mitochondrial DNA forensics: while interpreting length heteroplasmy conundrum of various Sindhi and Baluchi ethnic groups of Pakistan. Mitochondrial DNA Part A 29: 501-510.
Bini C, Ceccardi S, Luiselli D, Ferri G, Pelotti S, Colalongo C, Falconi M, Pappalardo G. 2003. Different informativeness of the three hypervariable mitochondrial DNA regions in the population of Bologna (Italy). Forensic Sci Int135: 48-52.
Budowle B, Allard MW, Wilson MR, Chakraborty R. 2003. Forensics and mitochondrial DNA: applications, debates, and foundations. Annu Rev Genomics Hum Genet 4: 119-141.
Chandrasekar A, Kumar S, Sreenath J, Sarkar BN, Urade BP, Mallick S, Kiran U. 2009.  Updating phylogeny of mitochondrial DNA macrohaplogroup m in India: dispersal of modern human in South Asian corridor. Plos One 4: e7447
Chen MH, Lee HM, Tzen CY. 2002. Polymorphism and heteroplasmy of mitochondrial DNA in the D-loop region in Taiwanese. J Formos Med Assoc 101(4): 268-276.
Chung U, Lee HY, Yoo JE, Park MJ, Shin KJ. 2005. Mitochondrial DNA CA dinucleotide repeats in Koreans: the presence of length heteroplasmy. Int J Legal Med 119: 50-53
Divne AM, Nilsson M, Calloway C, Reynolds R, Erlich H, Allen M. 2005. Forensic casework analysis using the HVI/HVII mtDNA linear array assay. J Forensic Sci 50: 1-7.
Excoffier L, Lischer HE. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10: 564-567.
Fridman C, Gonzalez RS. 2009. HVIII discrimination power to distinguish HVI and HVII common sequences. Forensic Sci Int Genet Suppl Ser 2: 320-321.
Gabriel MN, Calloway CD, Reynolds RL, Primorac D. 2003. Identification of human remains by immobilized sequence-specific oligonucleotide probe analysis of mtDNA hypervariable regions I and II. Croat Med J 44: 293-298.
Hameed IH, Jebor MA. 2016. Forensic analysis of mitochondrial dna hypervariable region HVII (encompassing nucleotide positions 37 to 340) and HVIII (encompassing nucleotide positions 438-574) and evaluating the importance of these variable positions for forensic genetic purposes. J Univ Babylon 24: 1246-1259.
Hoong LL, Lek KC. 2005. Genetic polymorphisms in mitochondrial DNA hypervariable regions I, II and III of the Malaysian population. Asia Pacific J Mol Biol Biotechnol 13: 79-85
Hwa HL, Ko TM, Chen YC, Lin CY, Huang YH, Tseng LH, Lee JC. 2012. Sequence polymorphisms of mtDNA HV1, HV2 and HV3 regions in eight population groups living in Taiwan. Aust J Forensic Sci 44: 243-252.
Imaizumi K, Parsons TJ, Yoshino M, Holland MM. 2002. A new database of mitochondrial DNA hypervariable regions I and II sequences from 162 Japanese individuals. Int J Legal Med 116: 68-73.
Irwin JA, Saunier JL, Beh P, Strouss KM, Paintner CD, Parsons TJ. 2009. Mitochondrial DNA control region variation in a population sample from Hong Kong, China. Forensic Sci Int Genet 3: 119-125.
Ivanov PL, Wadhams MJ, Roby RK, Holland MM, Weedn VW, Parsons TJ. 1996. Mitochondrial DNA sequence heteroplasmy in the Grand Duke of Russia Georgij Romanov establishes the authenticity of the remains of Tsar Nicholas II. Nature Genet 12: 417-420.
Lander N, Rojas MG, Chiurillo MA, Ramírez JL. 2008. Haplotype diversity in human mitochondrial DNA hypervariable regions I–III in the city of Caracas (Venezuela). Forensic Sci Int Genet 2: 61-64.
Lee HY, Yoo JE, Park MJ, Chung U, Shin KJ. 2006. Mitochondrial DNA control region sequences in Koreans: identification of useful variable sites and phylogenetic analysis for mtDNA data quality control. Int J Legal Med 120: 5-14.
Lehocký I, Baldovič M, Kádaši Ľ, Metspalu E. 2008. A database of mitochondrial DNA hypervariable regions I and II sequences of individuals from Slovakia. Forensic Sci Int Genet 2: e53-59.
Lutz S, Wittig H, Weisser HJ, Heizmann J, Junge A, Dimo-Simonin N et al., Parson W, Edelmann J, Anslinger K, Jung S, Augustin C. 2000. Is it possible to differentiate mtDNA by means of HVIII in samples that cannot be distinguished by sequencing the HVI and HVII regions? Forensic Sci Int 113: 97-101.
Lutz S, Weisser HJ, Heizmann J, Pollak S. 1998. Location and frequency of polymorphic positions in the mtDNA control region of individuals from Germany. Int J Leg Med 111: 67-77.
Mabuchi T, Susukida R, Kido A, Oya M. 2007. Typing the 1.1 kb control region of human mitochondrial DNA in Japanese individuals. J Forensic Sci 52: 355-363.
Nagai A, Nakamura I, Bunai Y. 2004. Sequence analysis of mitochondrial DNA HVIII region in a Japanese population. Int Congr Elsevier 1261: 410-412.
Nur Haslindawaty AR, Panneerchelvam S, Edinur HA, Norazmi MN, Zafarina Z. 2010. Sequence polymorphisms of mtDNA HV1, HV2, and HV3 regions in the Malay population of Peninsular Malaysia. Int J Leg Med 124: 415-426.
Palencia L, Valverde L, Álvarez A, Cainé LM, Cardoso S, Alfonso-Sánchez MA, Pinheiro MF, de Pancorbo MM. 2010. Mitochondrial DNA diversity in a population from Santa Catarina (Brazil): predominance of the European input. Int J Legal Med 124: 331-336.
Panneerchelvam S, Edinur HA, Norazmi MN, Zafarina Z. 2010. Sequence polymorphisms of mtDNA HV1, HV2, and HV3 regions in the Malay population of Peninsular Malaysia. Int J Legal Med 124: 415-426.
Quintana ML, Chaix R, Wells RS, Behar DM, Sayar H, Scozzari R, Rengo C, Al-Zahery N, Semino O, Santachiara-Benerecetti AS, Coppa A. 2004.  Where west meets east: the complex mtDNA landscape of the southwest and Central Asian corridor. Am J Hum Genet. 74: 827-845.
Shneewer HA, Al-loza NG, Kareem MA, Hameed IH. 2015. Sequence analysis of mitochondrial DNA hypervariable region III of 400 Iraqi volunteers. Afr J Biotechnol 14: 2149-2156.
Stoneking M, Hedgecock D, Higuchi RG, Vigilant L, Erlich HA. 1991. Population variation of human mtDNA control region sequences detected by enzymatic amplification and sequence-specific oligonucleotide probes. Am J Hum Genet 48: 370.
Sylvester C, Krishna MS, Rao, JS, Chandrasekar A. 2018. Allele frequencies of mitochondrial DNA HVR III 514-524 (CA)n dinucleotide repeats in the Urali Kuruman tribal population of South India. Egypt J Forensic Sci 8: 1-5.
Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585-595.
Thongngam P, Leewattanapasuk W, Bhoopat T, Sangthong P. 2016. Nucleotide sequence analysis of the hypervariable region III of mitochondrial DNA in Thais. J Forensic Leg Med 41: 10-14.
Tsutsumi H, Komuro T, Mukoyama R, Nogami H. 2006.  Hypervariable region structure and polymorphism of mtDNA from dental pulp and a family analysis. J Oral Sci 48: 145-152.
Vanecek T, Vorel F, Sip M. 2004. Mitochondrial DNA D-loop hypervariable regions: Czech population data. Int J Legal Med 118: 14-18.
Zhang Y, Xu Q, Cui H, Cui Y, Lin H, Kim K, et al. 2005. Haplotype diversity in mitochondrial DNA hypervariable region I, II and III in a Korean ethnic group from northeast China. Forensic Sci Int 151: 299-301.
Zhang YJ, Xu QS, Zheng ZJ, Lin HY, Lee J Bin. 2005. Haplotype diversity in mitochondrial DNA hypervariable region I, II and III in northeast China Han. Forensic Sci Int 149: 267-269.