The Phylogenetic Relationships within the Tribe Bovini (Bovidae: Bovinae) Using Mitochondrial Genome

Document Type : Research Article


1 Department of Biology, Faculty of Sciences, Shiraz University, Shiraz, Iran

2 Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran

3 Department of Natural Resources and Environmental Engineering, School of Agriculture, Shiraz University, Shiraz, Iran

4 Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran


Molecular data are powerful tools to resolve taxonomic problems. Each gene in each taxon shows a degree of variation through which we can understand phylogenetic relationships among different taxa. In this survey, the phylogenetic relationships within the tribe Bovini were reevaluated using 24 mitogenomes and cytochrome b (cytb), cytochrome c oxidase subunit 1 (cox1), 16S ribosomal RNA (16S rRNA), and NADH dehydrogenase subunit I (ND1) mitochondrial markers. We used all the gene sequences of extinct, domesticated, and wild species within the tribe Bovini. The phylogenetic trees were reconstructed using the maximum likelihood (ML) method. Based on the mitogenomes, the average base composition of mtDNA sequences was 27.1% T, 26% C, 33.5% A, and 13.4% G, showing a strong AT bias (60.6%). Our results revealed that the genus bison is not an independent taxon in the taxonomic rank of the genus and it is completely a paraphyletic taxon. Saola (Pseudoryx nghetinhensis) showed a sister relationship with other species belonging to the subtribe Bovina and it might be better to place this species within the subtribe Bovina. Also, in the mentioned subtribe, we distinguished three distinct monophyletic groups. In all of the phylogenetic trees, the subtribe Bubalina was a monophyletic taxon, and Syncerus caffer had a sister group relationship with other species belonging to the genus Bubalus. The obtained data should be taken into consideration in future conservation efforts for this tribe.


Abdilzadeh R, Aliabadian M, Olsson U. 2019. A Molecular assessment of the Taxonomy of Iranian Sylvia Warblers (Aves; Sylviidae). J Genet Resour 5: 149-162.
Achilli A, Olivieri A, Pellecchia M, Uboldi C, Colli L, Al-Zahery N, Battaglia V. 2008. Mitochondrial genomes of extinct aurochs survive in domestic cattle. Curr Biol 18: R157-R158.
Aliabadian M, Nijman V, Mahmoudi A, Naderi M, Vonk, Vences M. 2014. ExcaliBAR: a simple and fast software utility to calculate intra-and interspecific distances from DNA barcodes. Contrib Zool 83: 79-84.
Anderson S, De Bruijn MHL, Coulson AR, Eperon IC, Sanger F, Young IG. 1982. Complete sequence of bovine mitochondrial DNA conserved features of the mammalian mitochondrial genome. J Mol Biol 156: 683-717.
Bibi F. 2013. A multi-calibrated mitochondrial phylogeny of extant Bovidae (Artiodactyla, Ruminantia) and the importance of the fossil record to systematics. BMC Evol Biol 13: 166.
Buntjer JB, Otsen M, Nijman IJ, Kuiper MTR, Lenstra JA. 2002. Phylogeny of bovine species based on AFLP fingerprinting. Heredity 88: 46-51.
Castelló JR. 2016. Bovids of the world: Antelopes, Gazelles, Cattle, Goats, Sheep, and Relatives. Princeton University Press, Princeton, New Jersey.
Chunnian L, Wu X, Ding X, Wang H, Guo X, Chu M, Bao P, Yan P. 2016. Characterization of the complete mitochondrial genome sequence of wild yak (Bos mutus). Mitochondrial DNA A 27: 4266-4267.
Colagar A, Karimi F. 2014. Large scale deletions of the mitochondrial DNA in astheno, asthenoterato and oligoasthenoterato-spermic men. Mitochondrial DNA 25: 321-328.
Colagar A, Mosaieby E, Seyedhassani SM, Mohajerani M, Arasteh A, Kamalidehghan B, Houshmand M. 2013. T4216C mutation in NADH dehydrogenase I gene is associated with recurrent pregnancy loss. Mitochondrial DNA 24: 610-612.
Edwards CJ, Magee DA, Park SD, McGettigan PA, Lohan AJ, Murphy A, Bradley DG. 2010. A complete mitochondrial genome sequence from a mesolithic wild aurochs (Bos primigenius). PLoS One 5: e9255.
Excoffier L, Laval G., Schneider S. 2005. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol Bioinform.
Felsenstein J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783-791.
Fernández MH, Vrba ES. 2005. A complete estimate of the phylogenetic relationships in Ruminantia: a dated species-level supertree of the extant ruminants. Biol Rev 80: 269-302.
Gatesy J, Arctander P. 2000. Hidden morphological support for the phylogenetic placement of Pseudoryx nghetinhensis with bovine bovids: a combined analysis of gross anatomical evidence and DNA sequences from five genes. Syst Biol 49: 515-538.
Geraads D. 1992. Phylogenetic analysis of the tribe Bovini (Mammalia: Artiodactyla). Zool J Linn Soc-Lond 104: 193-207.
Ghassemi-Khademi T. 2017. Evaluation of phylogenetic relationships of Antilopini and Oreotragini tribes (Bovidae: Artiodactyla) based on complete mitochondrial genomes. J Wildlife Biodiver 1: 1-11.
Ghassemi-Khademi T, Hamidi K. 2019. Re-evaluation of Molecular Phylogeny of the Subfamily Cephalophinae (Bovidae: Artiodactyla); with Notes on Diversification of Body Size. Jordan J Biol Sci 12(5): 637-647.
Ghassemi-Khademi T, Madjdzadeh SM. 2019. Phylogenetic Relationships within the Tribe Hippotragini (Antilopinae: Bovidae) Based on Mitochondrial Genome. Jordan J Biol Sci 12(3): 297-305.
Groves C, Grubb P. 2011. Ungulate Taxonomy. Johns Hopkins University Press, Baltimore, Maryland.
Groves CP. 1981. Systematic relationships in the bovini (Artiodactyla, Bovidae). J Zool Syst Evol Res 19: 264-278.
Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41: 95–98.
Hartl GB, Göltenboth R, Grilltsch M, Willing R. 1988. On the biochemical systematics of the Bovini. Biochem Syst Ecol 16: 575-579.
Hasegawa M, Kishino H, Yano TA. 1985. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22: 160-174.
Hassanin A, An J, Ropiquet A, Nguyen TT, Couloux A. 2013. Combining multiple autosomal introns for studying shallow phylogeny and taxonomy of Laurasiatherian mammals: Application to the tribe Bovini (Cetartiodactyla, Bovidae). Mol Phylogenet Evol 66: 766-775.
Hassanin A, Delsuc F, Ropiquet A, Hammer C, Van Vuuren BJ, Matthee C, Couloux A. 2012. Pattern and timing of diversification of Cetartiodactyla (Mammalia, Laurasiatheria), as revealed by a comprehensive analysis of mitochondrial genomes. C R Biol 335: 32-50.
Hassanin A, Ropiquet A. 2004. Molecular phylogeny of the tribe Bovini (Bovidae, Bovinae) and the taxonomic status of the Kouprey, Bos sauveli Urbain 1937. Mol Phylogenet Evol 33: 896-907.
Hassanin A. 2014. Systematic and Evolution of Bovini. Part 1, Chapter 1,  In: Melletti J., Burton J. (eds) Ecology, Evolution and Behaviour of Wild Cattle: Implications for Conservation. Cambridge, Cambridge University Press.
Hiendleder S, Lewalski H, Janke A. 2008. Complete mitochondrial genomes of Bos taurus and Bos indicus provide new insights into intra-species variation, taxonomy and domestication. Cytogenet Genome Res 120: 150-156.
Janecek LL, Honeycutt RL, Adkins RM, Davis SK. 1996. Mitochondrial gene sequences and the molecular systematics of the artiodactyl subfamily Bovinae. Mol Phylogenet Evol 6: 107-119.
Li MW, Lin Q, Wang YZ, Huang JX, Qiu HJ. 2020. Identification and phylogenetic analysis of the complete mitochondrial genome of Fuzhong buffalo (Artiodactyla: Bovidae). Mitochondrial DNA B 5: 713-714.
Li SP, Chang H, Ma GL, Cheng HY. 2008. Molecular phylogeny of the gayal in Yunnan China inferred from the analysis of cytochrome b gene entire sequences. Asian Austral J Anim 21: 789-793.
Lin Q, Li MW, Wang YZ, Qiu HJ. 2020. Determination and phylogenetic analysis of the complete mitochondrial genome of Bubalus bubalis Linnaeus, 1758 breed Murrah (Artiodactyla: Bovidae). Mitochondrial DNA B 5: 432-433.
MacEachern S, McEwan J, Goddard M. 2009a. Phylogenetic reconstruction and the identification of ancient polymorphism in the Bovini tribe (Bovidae, Bovinae). BMC Genomics 10:177.
MacEachern S, McEwan J, McCulloch A, Mather A, Savin K, Goddard M. 2009b. Molecular evolution of the Bovini tribe (Bovidae, Bovinae): Is there evidence of rapid evolution or reduced selective constraint in Domestic cattle? BMC Genomics 10: 179.
Marsolier-Kergoat MC, Palacio P, Berthonaud V, Maksud F, Stafford T, Bégouën R, Elalouf JM. 2015. Hunting the extinct steppe bison (Bison priscus) mitochondrial genome in the Trois-Freres Paleolithic Painted Cave. PLoS One 10: e0128267.
Matthee CA, Davis SK. 2001. Molecular insights into the evolution of the family Bovidae: a nuclear DNA perspective.  Mol Biol Evol 18: 1220-1230.
McKenna MC, Bell SK. 1997. Classification of mammals: above the species level. Columbia University Press.
Miyamoto MM, Tanhauser SM, Laipis PJ. 1989. Systematic relationships in the artiodactyl tribe Bovini (family Bovidae), as determined from mitochondrial DNA sequences. Syst Zool 38: 342-349.
Nijman IJ, Van Boxtel DC, Van Cann LM, Marnoch Y, Cuppen E, Lenstra JA. 2008. Phylogeny of Y chromosomes from bovine species. Cladistics 24: 723-726.
Nowak RM. 1999. In Walker’s mammals of the world. J H U Press.  2: 1051-1238.
Palacio P, Berthonaud V, Guérin C, Lambourdière J, Maksud F, Philippe M, Elalouf JM. 2017. Genome data on the extinct Bison schoetensacki establish it as a sister species of the extant European bison (Bison bonasus). BMC Evolutionary Biology 17: 1-11.
Posada D, Crandall KA. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817-818.
Prusak B, Grzybowski G, Ziêba G. 2004. Taxonomic position of Bison bison (Linnaeus 1758) and Bison bonasus (Linnaeus 1758) as determined by means of cytb gene sequence. Anim Sci P 22: 27-35.
Qiu Q, Zhang G, Ma T, Qian W, Wang J, Ye Z, Auvil L. 2012. The yak genome and adaptation to life at high altitude. Nat Genet 44: 946-949.
Ritz LR, Glowatzki‐Mullis ML, MacHugh DE, Gaillard C. 2000. Phylogenetic analysis of the tribe Bovini using microsatellites. Anim Genet 31: 178-185.
Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixedmodels. Bioinformatics 19: 1572-1574.
Schwarz G. 1978. Estimating the dimension of a model. Ann Stat 6: 461-464.
Smith DR. 2011. Asian honeybees and mitochondrial DNA. In Honeybees of Asia (pp. 69-93). Springer, Berlin, Heidelberg.
Srirattana K, McCosker K, Schatz T, John JCS. 2017. Cattle phenotypes can disguise their maternal ancestry. BMC Genetics 18:1-11.
Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688-2690.
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol  Evol 30: 2725-2729.
Tamura K. 1992. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol Biol  Evol 9: 678-687.
Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673-4680.
Verkaar EL, Nijman IJ, Beeke M, Hanekamp E, Lenstra JA. 2004. Maternal and paternal lineages in cross-breeding bovine species. Has wisent a hybrid origin? Mol Biol  Evol 21: 1165-1170.
Wall DA, Davis SK, Read BM. 1992. Phylogenetic relationships in the subfamily Bovinae (Mammalia: Artiodactyla) based on ribosomal DNA. J Mammal 73: 262-275.
Węcek K, Hartmann S, Paijmans JL, Taron U, Xenikoudakis G, Cahill JA, Crees JJ. 2016. Complex admixture preceded and followed the extinction of wisent in the wild. Mol Biol  Evol 34: 598-612.
Win NZ, Choi EY, Park J, Park JK. 2017. Molecular phylogenetic relationship of the subfamily Nymphalinae (Lepidoptera: Nymphalidae) in Myanmar, inferred from mitochondrial gene sequences. J Asia-Pac Entomol 10: 86-90.
Wright S. 1984. Evolution and the genetics of populations, experimental results and evolutionary deductions (Vol. 3). University of Chicago Press.
Xuan TP, Georgescu SE, Manea MA, Hermenean AO, Costache M. 2010. Genetic diversity and phylogenetic relationships of Romanian cattle breeds inferred from cytochrome b gene partial sequences. Rom Biotech Lett 15: 5154-5158.
Yang C, Xiang C, Qi W, Xia S, Tu F, Zhang X, Yue B. 2013. Phylogenetic analyses and improved resolution of the family Bovidae based on complete mitochondrial genomes. Biochem Syst Ecol 48: 136-143.