Culturable Diversity and Enzyme Production Survey of Halophilic Prokaryotes from a Solar Saltern on the Shore of the Oman Sea

Document Type : Research Article


1 Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran

2 Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran


The prokaryotic residents of the Tis solar saltern in the southeast of Iran on the shore of Oman Sea were investigated by the culture-dependent methods. Sequencing of the PCR-amplified fragments of 16S rRNA genes revealed that bacterial populations were related to Actinobacteria, Bacteroidetes, Balneolaeota, Firmicutes, and Proteobacteria. They were phylogenetically identified as members of Bacillus (35%), Aliifodinibius (15%), Longibacter (10%), Halomonas (10%), Arthrobacter (5%), Luteimonas (5%), Ornithinibacillus (5%), Rhodovibrio (5%), Staphylococcus (5%),and Tamilnaduibacter (5%). All archaeal isolates were belonged to the order Halobacteriales in the following genera: Haloferax (33%), Haloarcula (27%), Halogeometricum (11%), Halococcus (5%), Halomicroarcula (5%), Halorubrum (5%), Halostagnicola (5%), and Natronoarchaeum (5%). Semi-quantitative evaluation of six hydrolytic enzymes, including amylase, cellulase, lipase, pectinase, protease, and urease among these strains, revealed that urease (47%) and amylase (41%) had the highest production frequency. The average production rates were observed for lipase (25%) and protease (30%), while the pectinase (12%) and cellulase (4%) productions were rare among these halophiles. The most potent bacterial/archaeal strains for the enzymes production were as: Longibacter/Natronoarchaeum (amylase), Bacillus/ non archaeum (cellulase), Tamilnaduibacter/ Haloferax (lipase), Bacillus/ Haloferax (pectinase), Bacillus/ Haloferax (protease), and Staphylococcus/ Halococcus (urease). This first report about the prokaryote populations of the solar salterns in Iran demonstrated its high microbial diversity and potentials for the production of industrially interesting enzymes.


Amoozegar MA, Malekzadeh F, Malik KA. 2003. Production of amylase by newly isolated moderate halophile, Halobacillus sp. strain MA-2. J Microbiol Methods 52: 353-359.
Amoozegar MA, Mehrshad M. 2013. Inventory of new microbial taxa from Iran. P Bio Sci 3:1-26.
Amoozegar MA, Schumann P, Hajighasemi M, Fatemi A Z, Karbalaei-Heidari HR. 2008. Salinivibrio proteolyticus sp. nov., a moderately halophilic and proteolytic species from a hypersaline lake in Iran. Int J Syst Evol Microbiol 58: 1159-1163.
Anton J, Rossello-mora R, Rodríguez-Valera F, Amann R. 2000. Extremely halophilic bacteria in crystallizer ponds from solar salterns. Appl Environ Microbiol 66: 3052-3057.
Biswas J, Paul AK. 2013. Production of extracellular enzymes by halophilic bacteria isolated from solar salterns. Int J Appl Biol Pharm 4: 30-36.
Burns DG, Camakaris HM, Janssen PH, Dyall-Smith ML. 2004. Combined use of cultivation-dependent and cultivation-independent methods indicates that members of most haloarchaeal groups in an Australian crystallizer pond are cultivable. Appl Environ Microbiol 70: 5258-5265.
Çınar S, Mutlu MB. 2016. Comparative analysis of prokaryotic diversity in solar salterns in eastern Anatolia (Turkey). Extremophiles 20: 589-601.
Cody RM. 1989. Distribution of chitinase and chitobiase in Bacillus. Curr Microbiol 19: 201-205.
Dang H, Zhu H, Wang J, Li T. 2009. Extracellular hydrolytic enzyme screening of culturable heterotrophic bacteria from deep-sea sediments of the Southern Okinawa Trough. World J Microbiol Biotechnol 25: 71-79.
DasSarma S, Arora P. 2002. Halophiles. Encyclopedia of Life Sciences 8: 458-466.
DeLong E. 1992. Archaea in coastal marine environments. Proc Natl Acad Sci 89:5685-5689.
Ghose TK. 1987. Measurement of cellulase activities. Pure Appl Chem 59: 257-268.
Gunny AAN, Arbain D, Jamal P, Gumba RE.2015. Improvement of halophilic cellulase production from locally isolated fungal strain. Saudi J Biol Sci 22: 476-483.
Krishnamurthi S, Verma A, Mual P, Mayilraj S. 2015. Tamilnaduibacter salinus gen. nov., sp. nov., a halotolerant gammaproteobacterium within the family Alteromonadaceae, isolated from a salt pan in Tamilnadu, India. Int J Syst Evol Microbiol 65: 3248-3255.
Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 33: 1870-1874.
Kushner D,  Kamekura M. 1988. Physiology of halophilic eubacteria. In Rodriguez-Valera F eds. Halophilic Bacteria Vol 1. CRC Press, Boca Raton.
Lane DJ, Pace B, Olsen GJ, Stahl D, Sogin M, Pace NR. 1985. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci 82: 6955-6959.
Lim JM, Yoon JH, Lee JC, Jeon CO, Park DJ, Sung C,  Kim CJ. 2004. Halomonas koreensis sp. nov., a novel moderately halophilic bacterium isolated from a solar saltern in Korea. Int J Syst Evol Microbiol 54: 2037-2042.
Makhdoumi Kakhki A, Amoozegar MA, Mahmodi Khaledi E. 2011. Diversity of hydrolytic enzymes in haloarchaeal strains isolated from salt lake. Int J Environ Sci Technol 8: 705-714
Maturrano L, Santos F, Rosselló-Mora R, Antón J. 2006. Microbial diversity in Maras salterns, a hypersaline environment in the Peruvian Andes. Appl Environ Microbiol 72: 3887-3895.
Menasria T, Aguilera M, Hocine H, Benammar L, Ayachi A, Si Bachir A, Dekak A, Monteoliva-Sánchez M. 2018. Diversity and bioprospecting of extremely halophilic archaea isolated from Algerian arid and semi-arid wetland ecosystems for halophilic-active hydrolytic enzymes. Microbiol Res 207: 289-298.
Moreno MDL, Pérez D, García MT, Mellado E. 2013. Halophilic bacteria as a source of novel hydrolytic enzymes. Life 3:38-51.
Natarajan KR, Road H, Principle A,  Assay E. 1995. Kinetic study of the enzyme urease from dolichos biflorus. J Chem Educ 72: 556-557.
Nercessian D, Di Meglio L, De Castro R, Paggi R. 2015. Exploring the multiple biotechnological potential of halophilic microorganisms isolated from two Argentinean salterns. Extremophiles 19: 1133-1143.
Oh D, Porter K, Russ B, Burns D, Dyall-Smith M. 2010. Diversity of Haloquadratum and other haloarchaea in three, geographically distant, Australian saltern crystallizer ponds. Extremophiles 14: 161-169.
Oren A. 2015. Halophilic microbial communities and their environments. Curr Opin Biotechnol 33: 119-124.
Panosyan H, Li WJ. 2018. Extremophiles in eurasian ecosystems: ecology, diversity, and application. Springer, 265-298.
Pašić L, Bartual SG, Ulrih NP, Grabnar M, Velikonja BH. 2005. Diversity of halophilic archaea in the crystallizers of an Adriatic solar saltern. FEMS Microbiol Ecol 54: 491-498.
Rathod BN, Bhatt HH, Upasani VN. 2016. Extracellular hydrolases producing haloarchaea from Marine Salterns at Okhamadhi , Gujarat , India. Int J  Curr Microbiol  App Sci 5: 51-64.
Saad B, Pok FW, Sujari ANA, Saleh MI. 1998. Analysis of anions and cations in drinking water samples by capillary ion analysis. Food Chem 61: 249-254.
Safarpour A, Amoozegar MA, Ventosa, A. 2018. Hypersaline environments of Iran; prokaryotic biodiversity and their potentials in microbial biotechnology. In: Egamberdieva D, Birkeland NK, Panosyan H, Li WJ, eds. Extremophiles in Eurasian Ecosystems: Ecology, Diversity, and Applications. Microorganisms for Sustainability, vol 8. Singapore: Springer, 265-298.
D, Birkeland NK, Samad MYA, Razak CNA, Salleh AB, Zin Wan Yunus WM, Ampon K, Basri M. 1989. A plate assay for primary screening of lipase activity. J Microbiol Meth 9: 51-56.
Sánchez-Porro C, Martín S, Mellado E, Ventosa A. 2003. Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. J Appl Microbiol94: 295-300.
Smibert RM, Krieg NR. 1994. Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR, eds. Methods for General and Molecular Bacteriology. Washington, DC: American Society for Microbiology, 607–654.
Xia J, Dunlap CA, Flor-Weiler L, Rooney AP, Chen GJ, Du ZJ. 2016. Longibacter salinarum gen. nov., sp. nov., isolated from a marine solar saltern. Int J Syst Evol Microbiol 66: 3287-3292.
 Yin J, Chen JC, Wu Q, Chen GQ. 2015. Halophiles, coming stars for industrial biotechnology. Biotechnol Adv 33: 1433-1442.
Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67: 1613-1617.