Amara, U., Hu, J., Cai, J., & Kang, H. (2023). FLK is an mRNA m6A reader that regulates floral transition by modulating the stability and splicing of FLC in
Arabidopsis. Molecular Plant, 16(5), 919-929.
https://doi.org/10.1016/j.molp.2023.04.005
Chaudhary, G., Goyal, S., & Poonia, P. (2010).
Lawsonia inermis Linnaeus: A Phytopharmacological Review.
International Journal of Pharmaceutical Sciences and Drug Research, 2(2), 91-98.
https://ijpsdronline.com/index.php/journal
Deng, W., Ying, H., Helliwell, C. A., Taylor, J. M., Peacock, W. J., & Dennis, E. S. (2011). FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of
Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 108, 6680-6685.
https://doi.org/10.1073/pnas.1103175108
El-Gendy, M. S., El-Gezawy, E. S., Saleh, A. A., Alhotan, R. A., Al-Badwi, M. A., Hussein, E. O. S., & Omar, S. M. (2023). Investigating the chemical composition of
Lepidium sativum seeds and their ability to safeguard against Monosodium Glutamate-induced hepatic dysfunction.
Foods, 12(22), 4129.
https://doi.org/10.3390/foods12224129
Fan, M., Chen, L., Xue, X., Guo, Q., Guo, D., Guo, L., & Hou, X. (2023). Identification and characterization of flowering time regulatory gene
FLC of
Paeonia ostii ‘Fengdan’.
Scientia Horticulturae, 310, 111748.
https://doi.org/10.1016/j.scienta.2022.111748
Kohan-Baghkheirati, E., Bagherieh-Najjar, M., Abdolzadeh, A., & Geisler-Lee, J. (2022). A precise expression level of dreb1a gene is required for proper seed germination, vegetative and reproductive development, and seed yield in Arabidopsis thaliana. Journal of Genetic Resources, 8(1), 99-110. https://doi: 10.22080/jgr.2022.22267.1279
Kim, D.H. (2020). Current understanding of flowering pathways in plants: focusing on the vernalization pathway in
Arabidopsis and several vegetable crop plants.
Horticulture, Environment, and Biotechnology, 61, 209-227
https://doi.org/10.1007/s13580-019-00218-5
Kinoshita, A. & Richter, R. (2020). Genetic and molecular basis of floral induction in,
Arabidopsis thaliana. Journal of Experimental Botany, 71(9): 2490-2504,
https://doi.org/10.1093/jxb/eraa057
Kumar,G.,
Arya, P.,
Gupta, K.,
Randhawa,V.,
Acharya, V. &
Singh, A.K. (2016). Comparative phylogenetic analysis and transcriptional profiling of MADS-box gene family identified
DAM and
FLC-like genes in apple (
Malusx
domestica).
Scientific Reports, 6: 20695.
https://doi.org/10.1038/srep20695
Lei, Y., Gao, J., Li, Y., Song, C., Guo, Q., Guo, L., & Hou, X. (2024). Functional characterization of
PoEP1 in regulating the flowering stage of tree peony.
Plants, 13, 1642.
https://doi.org/10.3390/plants13121642
Li, Y., Wang, C., Guo, Q., Song, C., Wang, X., Guo, L., & Hou, X. (2022). Characteristics of
PoVIN3, a key gene of vernalization pathway, affects flowering time.
International Journal of Molecular Sciences, 23, 14003.
https://doi.org/10.3390/ijms232214003
Lyu, J., Cai, Z., Li, Y., Suo, H., Yi, R., Zhang, S., & Nian, H. (2020). The floral repressor gmflc-like is involved in regulating flowering time mediated by low temperature in soybean.
International Journal of Molecular Sciences, 21.
https://doi.org/10.3390/ijms21041322
Mouradov, A., Cremer, F., & Coupland, G. (2002). Control of flowering time: interacting pathways as a basis for diversity.
The Plant Cell,
14 (suppl-1): S111–S130,
https://doi.org/10.1105/tpc.001362
Qi, P. L., Zhou, H. R., Zhao, Q. Q., Feng, C., Ning, Y. Q., Su, Y. N., & He, X. J. (2022). Characterization of an autonomous pathway complex that promotes flowering in
Arabidopsis.
Nucleic Acids Research, 50(13), 7380-7395.
https://doi:10.1093/nar/gkac551.
Schiessl, S. V., Quezada-Martinez, D., Tebartz, E., Snowdon, R. J., & Qian, L. (2019). The vernalization regulator
FLOWERING LOCUS C is differentially expressed in biennial and annual
Brassica napus. Scientific Reports, 9,14911,
https://doi.org/10.1038/s41598-019-51212-x1
Shah, M. B., Dudhat, V. A., & Gadhvi, K. V. (2021). Lepidium sativum: a potential functional food. Journal of Ayurvedic and Herbal Medicine, 7(2), 140-149.https://doi.org/10.31254/jahm.2021.7213
Sharma, N., Geuten, K., Giri, B. S., & Varma, A. (2020). The molecular mechanism of vernalization in Arabidopsis and cereals: role of
Flowering Locus C and its homologs,
Physiologia Plantarum, 170(3), 373-383,
https://doi.org/10.1111/ppl.13163
Shea, D. J., Itabashi, E., Takada, S., Fukai, E., Kakizaki, T., Fujimoto, R., & Okazaki, K (2017). The role of
FLOWERING LOCUS C in vernalization of
Brassica: the importance of vernalization research in the face of climate change.
Crop Pasture Sciences. 69, 30-39, https://doi.org/
10.1071/CP16468
Takada, S., Akter, A., Itabashi, E., Nishida, N., Shea, D. J., Miyaji, N., & Fujimoto, R. (2019). The role of
FRIGIDA and
FLOWERING LOCUS C genes in flowering time of
Brassica rapa leafy vegetables.
Scientific Reports,
9, 13843
https://doi.org/10.1038/s41598-019-50122-2
Wu, Z., Fang, X., Zhu, D., & Dean, C. (2020). Autonomous pathway:
FLOWERING LOCUS C repression through an antisense-mediated chromatin-silencing mechanism.
Plant Physiology, 182, 27-37. https://doi.org/
10.1104/pp.19.01009
Zhu, P., Schon, M., Questa, J., Nodine, M., & Dean, C. (2023). Causal role of a promoter polymorphism in natural variation of the
Arabidopsis floral repressor gene
FLC.
Current Biology, 33, 4381-4391.
https://doi.org/10.1016/j.cub.2023.08.079
Zou, X., Suppanz, I., Raman, H., Hou, J., Wang, J., Long, Y., ... & Meng, J. (2012). Comparative analysis of
FLC homologues in Brassicaceae provides insight into their role in the evolution of oilseed rape.
PLoS One, 7(9), e45751.
https://doi.org/10.1371/journal.pone.004