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 Single Nucleotide Polymorphisms, especially non-synonymous single-
nucleotide polymorphisms (nsSNPs), which are the cause of various diseases, 
are a major issue in genetics. NsSNPs in protein-coding genes can cause 
functional and structural variations in the altered protein. The human CXCL10 
gene, localized on chromosome 4q21, is a pro-inflammatory cytokine and 
plays a role in diverse and critical biological mechanisms. Despite its 
significance, there is not any document about the impact of variations mapped 
to this protein. Accordingly, we gathered data about SNPs on the CXCL10 
protein and examined the diverse effects of deleterious ones on the function 
and structure of the protein using various web-based tools. Our analyses 
indicated that 9 most deleterious nsSNPs (identified by SIFT, PROVEAN, 
PolyPhen-2, SNPs&GO, PhD-SNP, SNAP2, and PMut) in the conserved 
region of the CXCL10 affect the molecular function and stability of the 
protein. By utilizing RMSD values, we concluded that these substitutions in 
the native structure cause several changes in the protein, including in the N-
terminal end, which is vital for binding to the receptor, and finally results in 
altered regulation, expression, function, and consequently leads to different 
diseases. Furthermore, some SNPs on the 3′ UTR site showed pattern 
alterations in the upstream open reading frames (uORFs) and BRD-BOX; 
moreover, SNPs in this area result in significant changes in miRNA binding 
sites consequently. Finally, by some analyses, we identified that the CXCL10 
deregulation might be a proper prognostic marker in gastric and ovarian 
cancer. These types of studies help scientists determine whether SNPs are 
worth following for additional experimental studies to maximize the outcome 
while studying human health.  
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Introduction 

The most prevalent alteration in the genome of 
humans is Single Nucleotide Polymorphisms 
(SNPs), occurring in the coding and non-coding 
segments of genes. Protein-coding ones, which 
are called non-synonymous SNPs (nsSNPs), 
certainly can cause functional and structural 
alterations in the mutated protein. While some 
nsSNPs are phenotypically neutral, others are 

associated with a particular disease. Several 
probabilistic-based web servers that can 
recognize neutral SNPs from disease-related 
ones have been created (Akhoundi et al., 2016). 
A subclass of chemokines called CXC consists 
of a changeable amino acid among the two first 
residues, which are greatly conserved cysteine 
residues. According to the existence or absence 
of the Glu-Leu-Arg domain, this class is 
subdivided into two ELR positive and negative 
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groups, respectively. The ELR positive 
chemokines have angiogenesis properties, while 
the ELR negative ones, including the CXCL10, 
have angiostatic features (Antonelli et al., 2014). 
CXCL10 gene is localized on chromosome 4q21 
and is related to acute monocytic/B-lymphocyte 
lineage leukemia (Liu et al., 2011). Having four 
exons, CXCL10 encodes a 10,000 Daltons 
protein possessing 98-amino acids. According to 
PRINTS (Protein Motif fingerprint database) 
(accessible at 
[http://www.bioinf.manchester.ac.uk/dbbrowser/
PRINTS/]) CXCL10 protein consists of three 
critical regions 1) N-terminal or triggering 
domain (3LSRTVR8), 2) GAG binding domain 
(46

KKKGEKR
52), and 3) 24

 LEKLEIIPASQFCPRV 

EIIATM
45 constructing β1 strand and a small 

region of the N-loop and 30s loop (Yang et al., 
2004). Modification in each of these vital parts 
might cause functional, structural, and biological 
changes in the protein. 
CXCL10 commences its biological activity by 
binding to a transmembrane receptor named 
CXCR3. This procedure is dependent on two 
vital domains; docking domain (N-loop) and 
triggering domain placed on the N-terminus of 
the chemokine. Since these regions are essential 
for the complete function of the chemokine, 
polymorphisms in these regions affect receptor 
binding and activation (Booth et al., 2002). 
According to the previous studies, scientists 
figured out that CXCL10 is dysregulated in 
major human disorders such as cancer, infection, 
inflammation, and autoimmunity (Liu et al., 
2011). It has been proved that the expression of 
CXCL10 and CXCR3 has increased in a variety 
of autoimmune diseases as it is a critical factor in 
the leukocyte homing and causes inflammation 
and devastation of the target tissue (Young et al., 
2009). Several studies proved that the up-
regulation of CXCL10 in the central nervous 
system results in various neurological diseases 
(Vinet et al., 2010). It has been proved that 
CXCL10 is a critical interferon-induced 
chemokine in the anti-viral responses, 
specifically in respiratory tract infections 
(Hayney et al., 2017).  
In the recent pandemic of COVID-19, cytokine 
storm, a potentially fatal immune reaction, is 
induced by SARS-Cov-2 infection. Notably, 
CXCL10 is a key gene related to the cytokine 

storm of COVID-19 infection (Coperchini et al., 
2020). 
Most of the genetic studies conducted to date 
have just focused on the polymorphisms located 
on the promoter part of this gene. For instance, 
SNP at position -135 (rs56061981) in the 
promoter of the CXCL10 gene is responsible for 
the substitution of adenine into guanine. This 
polymorphism affects the NF-κB binding site in 
the promoter of the CXCL10 and leads to the 
expression of various levels of this gene in 
different individuals (Deng et al., 2008).  
Research conducted on the patients having 
colorectal cancer showed that the expression of 
the CXCL10 gene is elevated both in the plasma 
and colorectal tissue of the patient group 
compared to the control group. In addition, they 
observed obvious differences in genotype 
distribution and allelic frequencies of a single-
nucleotide polymorphism (rs8878) between the 
patient and normal group (Dimberg et al., 2014). 
To the best of our knowledge, there is no study 
on the outcome of non-synonymous SNPs on the 
structure and function of the CXCL10 gene. The 
existence of polymorphisms in the CXCL10 may 
change protein stability, binding properties, and 
post-translational modifications, and, as a 
consequence, may influence the immune 
response (Colobran et al., 2007). In this research, 
for the first time, we applied several web-based 
tools to predict the disease-related nsSNPs, 
mapped on CXCL10, to determine their 
structural and functional effects on in silico 
approaches. Figure 1 shows different stepts and 
procedures taken in this study. 

Materials and Methods 

Datasets 

All the data about SNPs (such as ID, protein 
accession number, the position of substitution, 
and mutated residue) mapped on the CXCL10 
gene was retrieved from the NCBI dbSNP 
database [http://www.ncbi.nlm.nih.gov/SNP] 
(Sayers et al., 2019) in February 2018. 

Recognition of the most deleterious nsSNPs 

Five diverse bioinformatics web servers 
(homology-based and SVM-based classifier) 
such as SIFT, PROVEAN, PolyPhen-2, PhD-
SNP, and SNPs & GO were used to identify the 
most predicted deleterious nsSNPs (Arshad et 
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al., 2018). Most of the above-mentioned 
computational tools just need protein sequence 
and amino acid changes as input. 
SIFT (sorting tolerant from intolerant) 
distinguishes amino acid substitutions having 
damaging effects on the protein function from 

neutral ones based on sequence homology and 
the physical properties. The SIFT score is ranged 
from 0.0 to 1.0, and substitutions are considered 
damaging if the SIFT score is ≤ 0.05. This tool is 
available at [http://sift.bii.a-
star.edu.sg/index.html] (Kumar et al., 2009).  

 

 
 
Fig. 1. Schematic flowchart of the steps of the research. 

 
Protein variation effect analyzer/PROVEAN 
(http://provean.jcvi.org) is another tool for 
predicting if an nsSNP affects the biological 
function of a protein. The variants are 
anticipated as deleterious if the PROVEAN 

score is ≤ -2.5 and neutral when the score is >-2 
(Choi et al., 2015).  
Polymorphism phenotyping v2/PolyPhen-2 
(http://genetics.bwh.harvard.edu/pph2/) 
considers the functional and structural impacts of 



Riahi and Emadi-Baygi, J Genet Resour, 2021; 7(2): 227-245 

230 

an amino acid substitution on a protein using 
evolutionary comparison. The tool provides 
position-specific independent count (PSIC) 
scores for each nsSNPs and anticipates 
variations as probably damaging (more 
confident), possibly damaging (less confident), 
and benign. The score ranges from 0 to 1. Amino 
acid substitutions having a score of 0 to 0.49 are 
considered benign, possibly damaging if score 
0.5 to 0.89, and probably damaging having a 
score of 0.9 to 1 (Adzhubei et al., 
2010).Predictor of human deleterious single 
nucleotide polymorphisms/PhD-SNP 
(http://snps.biofold.org/phd-snp/phd-snp.html) is 
an SVM-based classifier. Its input is protein 
sequence or Swiss-Prot code, the position of the 
substitution, and the mutant residue. It provides 
probability scores range from 0 to 1, and nsSNPs 
with scores > 0.5 are predicted to be deleterious 
(Capriotti et al., 2006). 
The single nucleotide polymorphism database & 
gene ontology (SNPs & GO), which It is 
available at http://snps.biofold.org/snps-and-
go/snps-andgo.html, another SVM-based 
classifier and a GO-integrated predictor and 
predicts deleterious nsSNPs utilizing sequence or 
SwissProt code of the protein, GO terms, and a 
list of considered nsSNPs. The output would be a 
table of probability scores and reliability indexes 
(RI) where probability scores > 0.5 are predicted 
to be deleterious (Capriotti et al., 2013). 

Determination of the most deleterious nsSNPs 
Screening for non-acceptable polymor- 
phisms/SNAP2 (https://www.rostlab.org/ 
services/SNAP) predicts a score spectrum 
from -100 (robust neutral prediction) to +100 
(robust effect prediction), indicating the 
probability of a particular SNP to modify the 
function of the native protein. The input of 
this tool is protein sequence in FASTA 
format and forecasts every probable 
replacement at each position of a protein in a 
heat map depiction. Dark red displays a high 
score for effect, while white shows weak 
signals, and blue illustrates a strong signal 
for neutral/no effect (Hecht et al., 2015).  

Furthermore, we used another web tool named 
PMut (http://mmb.pcb.ub.es/PMut). It uses 
protein sequence or its SwissProt/TrEMBL code 

and merges structural factors with sequence 
alignment to define deleterious missense 
substitutions. After choosing the sequence, users 
can analyze a single mutation or accomplish a 
complete mutation scan at that position. The 
result includes a pathogenicity index where 
indexes >0.5 display pathological mutations and 
a confidence index ranging from 0 (low) to 9 
(high) (Ferrer-Costa et al., 2005). 

Prediction of molecular properties 

To anticipate the pathogenicity and molecular 
mechanism of the replacement of each amino 
acid, MutPred2 (http://mutpred.mutdb.org/) was 
applied as a web-based tool that effectively 
examines molecular causes of the diseases, 
happened after amino acid substitutions (Pejaver 
et al., 2017). The output of this tool is a general 
score (g score), molecular mechanisms with P-
value <= 0.05, and a P-value and probability 
specifically for each property. The predicted 
results are grouped in 3 categories based on both 
g score and P-value; 1. Very confident 
hypotheses with P-value < 0.01 and g 
score > 0.75, 2. Confident hypothesis if P-
value < 0.05 and g > 0.75, and 3. Actionable 
hypotheses if g > 0.5 and P-value < 0.05 (Li et 
al., 2009). 

Prediction of protein stability modifications 

To test the stability of the target protein, we 
carried out I-Mutant 3.0 and ERIS. Analyses 
with I-Mutant, an support vector machine/ SVM 
predictor, (http://gpcr2.biocomp.unibo.it/cgi/ 
predictors/I-Mutant3.0/I-Mutant3.0.cgi) antici-
pates the protein stability changes that occur by a 
single-site mutation utilizing both the protein 
structure or the protein sequence. Based on the I-
Mutant predictions, the amino acid substitution 
would largely destabilize the protein if ΔΔG<-
0.5 kcal/mol, largely stabilize the protein if 
ΔΔG>0.5 kcal/mol, or would have a weak effect 
if -0.5<=ΔΔG<=0.5 kcal/mol (Capriotti et al., 
2008). ERIS (https://dokhlab.med.psu.edu/ 
eris/index.php), which similarly predicts the 
protein stability changes after the occurrence of a 
mutation, uses Medusa modeling suit to calculate 
ΔΔG. As an input, the PDB file or code of a 
protein is uploaded, and the output is free energy 
changes (ΔΔG). Validation of the results 
provided by this tool is calculated by comparing 
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the ΔΔG of a large dataset with the experimental 
data. If the predicted ΔΔG is greater than 0, there 
would be a decrease in the stability, and ΔΔG < 
0 means an increase in the stability of the protein 
(Yin et al., 2007). 

Analyzing protein evolutionary conservation 

The ConSurf server (http://consurf.tau 
.ac.il/2016/) measures the evolutionary 
preservation of each amino acid in a protein 
according to phylogenetic data related to 
homologous sequences. The tool uses the 
Bayesian algorithm for conservation and main 
structural and functional residue prediction 
(Ashkenazy et al., 2010). The output provided 
by the server is a conservation score (from 1 to 
9), which is specified with a color scheme 
ranging from blue (the most variable residue) to 
maroon (the most conserved residue). Moreover, 
if a residue is predicted to be conserved and 
exposed, it is assumed to be functional, while it 
would be structural if anticipated as conserved 
and buried. 

Structural analysis 

The effect of the nsSNPs on the structural level 
was examined using the 3D structure of the 
protein. The native full-length 3D structure of 
CXCL10 and the mutant proteins were modeled 
utilizing I-Tasser because the 3D structure 
available at the PDB bank (https://www.rcsb.org/ 
structure/1LV9) has a mutation. The I-TASSER 
server (http://zhanglab.ccmb.med.umich.edu/I-
TASSER/) first uses a meta-threading technique 
built to use template proteins. Next, replica-
exchange Monte Carlo simulations reassembles 
the templates and finally builds the unaligned 
region by ab initio modeling, and low free-
energy templates are signified by SPICKER. The 
confidence of models is identified by C-score, 
which ranges between -5 to 2, and the highest C-
score belongs to the best model (Yang et al., 
2014). All the modeled proteins went under 
energy minimization using Swiss-PdbViewer 
v4.1 (Johansson et al., 2012). Mutated proteins 
were superimposed onto CXCL10 wild protein 
utilizing SuperPose v1.0 (http://superpose. 
wishartlab.com) (Maiti et al., 2004), and root-
mean-square deviation/RMSD values were 
evaluated. The SuperPose server accepts the 
PDB accession number of the protein, aligns 

them using the Needleman-Wunsch pairwise 
alignment algorithm, superpose structures, and 
finally calculates RMSD values. The RMSD 
value is provided for alpha carbons, backbone 
atoms, heavy atoms, and all atoms. Finally, we 
visualized superimposed models by Chimera 
1.14 (https://www.cgl.ucsf.edu/chimera/) 
(Pettersen et al., 2004). This tool has a range of 
applications, such as molecular structure 
analyses. The superposed structures provided by 
the SuperPose tool were visualized, colored, and 
labeled utilizing Chimera. 
In addition, we used have (y) our protein 
explained/HOPE server (http://www.cmbi. 
umcn.nl/hope/) that predicts the structural 
impacts of an nsSNP on the protein sequence 
using UniProtKB and DAS-servers. The protein 
sequence and selected substitution are applied to 
the server comparing the native and mutant 
structures and providing a short explanation of 
the consequences each mutation would have on 
the protein, overlapped schematic structures of 
the native and the mutant amino acids, and 
disparities in the properties of native and mutant 
amino acids (Venselaar et al., 2010). 

Consequences of SNPs in UTR sites  

The 5′ and 3′ sections are untranslated 
regions/UTRs that critically regulate post-
transcriptional modifications, translation 
potency, and stability. Functional SNPs were 
analyzed using a pattern matcher service, 
UTRScan (http://itbtools.ba.itb.cnr.it/utrscan), 
which finds UTR functional elements 
accumulated within the UTRsite of a sequence 
(Grillo et al., 2009). After insertion of an SNP 
into the native UTR sequence, if each UTR SNP 
is determined to change motifs, this SNP is 
believed to have a functional effect. To carry this 
out, FASTA format information with the 
mutation was submitted, and its consequences on 
the confirmed UTR elements in the unique 
region (5′and 3′) were predicted 

Polymorphism in microRNAs and their target 
sites 

PolymiRTS (http://compbio.uthsc.edu/miRSNP/) 
is designed for the identification of SNPs in the 
microRNA regions and their target sites 
(Bhattacharya et al., 2014). MicroRNAs have a 
vital role in translation and mRNA stability; 
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thus, SNPs at these sites may cause an 
impressive effect on the expression and 
biological pathways (Yuan et al., 2018). The 
outputs provided by PolymiRTS are grouped in 4 
classes: class ‘D’ showing that the allele would 
disrupt a conserved miRNA site, class ‘C’ means 
that the allele would create a new miRNA site, 
class ‘N’ represents that the allele disrupts a non-
conserved miRNA site, and class ‘O’ assigned 
when the ancestral allele cannot be determined. 
The D and C classes, which respectively may 
result in loss of normal repression and atypical 
gene repression control, would have the most 
obvious functional effects on gene expression. 
The analysis was performed by submitting the 
CXCL10 symbol to the tool, and SNPs 
categorized in the D and C classes were 
considered to have adverse functional impacts. 

Survival analysis  

Kaplan-Meier plotter (http://kmplot.com/ 
analysis) is a meta-analyzer to estimate the 
impact of 54,675 genes on survival using 5,143 
breasts, 1,816 ovarian, 2,437 lung, and 1,065 
gastric cancer patients (Kishore et al., 2010). 
Three different sources, including gene 
expression omnibus/GEO, european genome-
phenome archive/EGA, and the cancer genome 
atlas/TCGA are used by this tool. ‘204533_at’ 
was used as a probe for CXCL10. We performed 
overall survival analysis on 1402, 1656, 1926, 
and 876 patients with breast, ovarian, lung, and 
gastric cancers, respectively. This tool compares 
the survival rate of two groups of samples 
according to the expression of a specific gene 
and measures hazard ratio and log-rank P-value. 

Results 

Distribution and frequency of CXCL10 SNPs 

We characterized a total of 1012 SNPs on the 
CXCL10 gene from the tremendous SNPs 
database, dbSNP. Information about the SNPs 
(dbSNP Id, allele, positions, and substitution) is 
shown in Supplementary Table 1 (available upon 
request). Of the total SNPs annotated on the 
CXCL10, 68 were missense SNPs, 24 SNPs 
were located in 5'UTR, 171 SNPs were in the 
3'UTR region, and the others belonged to other 
groups. Moreover, the FASTA sequences were 
retrieved from the NCBI (NM-001565.4 and NP-
001556.2). The whole protein contains 98 amino 

acids, from which the first 21 amino acids code 
the signal peptide region. We continued our 
study with the non-synonymous coding SNPs, 5′, 
and 3′ UTR region SNPs. 

Deleterious nsSNPs identified in CXCL10 
using various servers 

All the 68 nsSNPs reported in the CXCL10 were 
analyzed by all five aforementioned in silico 
nsSNP prediction algorithms, and the ones 
identified to be pathogenic by at least 4 of the 
algorithms were selected for more analyses 
(Table 1). Of the total 68 missense SNPs, 14 
nsSNPs were predicted deleterious, and G18V 
located in the signal peptide region of the protein 
was excluded from the study. Supplementary 
Table 2 (available upon request) shows the 
results of the remaining nsSNPs subjected to the 
five mentioned in silico nsSNP prediction 
algorithms. 

Verification of the most deleterious nsSNPs 

To verify the pathogenicity of the 13 disease-
related nsSNPs, identified by in silico analyses, 
we submitted them to both SNAP2 and PMUT 
servers. Both servers predicted R29C, C30Y, 
C30R, C32R, I33F, L45S, A64T, L75P, L75R, 
and P77S as deleterious nsSNPs. However, 
PMUT indicated R29H, M66T, and E61Q as 
neutral. Thus, for further analyses, we excluded 
R29H, M66T, and E61Q. The heat map provided 
by SNAP2 and the results produced by PMUT is 
shown in Fig. 2 and Table 2, respectively. 

Identifying molecular properties  

The information of the 10 most deleterious 
nsSNPs, predicted based on the previous 
analyses, was applied to the MutPred server and 
the predicted molecular effects on the CXCL10 
are shown in Table 3. L75P (g score = 0.905) 
and L75R (g score = 0.897) were predicted to be 
highly pathogenic and were anticipated with 
very confident hypothesis to cause loss of 
disulfide linkage at C74 having p = 9.1e-04 and 
p = 8.3e-04, respectively. The mutations R29C 
(g score = 0.814 and p = 5.1e-03), C30Y (g score 
= 0.955 and p = 5.2e-03), L75R (g score = 0.897 
and p = 4.0e-03), C30R (g score = 0.968 and p = 
5.2e-03), and C32R (g score = 0.968 and p = 
4.5e-03) were assumed to be highly pathogenic 
and were anticipated to be the cause of altered 
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metal binding by a very confident hypothesis. 
Moreover, the alteration in transmembrane 
protein was predicted to happen at R29C (g 
score = 0.814 and p = 4.9e-05), C30Y (g score = 
0.955 and p = 1.3e-04), C30R (g score = 0.968 

and p = 3.8e-04), and C32R (g score = 0.968 and 
p = 3.7e-04) with a very confident hypothesis. 
The gain of strand was predicted to occur due to 
C30Y (g score = 0.955 and p = 8.3e-05).

 
Table 1. Outputs for the most deleterious nsSNPs identified by the five in silico nsSNP prediction algorithms.  

rsID Amino 
acid 
Change 

SIFT PROVEAN PolyPhen- 2 PhD-SNP SNPs & GO 
Prediction  Score 

 
Prediction  Score  Prediction  Score  Prediction  RI Prediction  RI 

rs11548618 R29C 
 

Damaging 
 

0.000 
 

Deleterious 
 

-7.251 
 

Probably 
damaging 

1.000 
 

Disease 
 

6 
 

Disease 
 

7 
 

rs143493954 G18V Damaging 
  

0.01 Deleterious -3.261 Possibly 
damaging 

0.829 Disease 8 Disease 
 

7 

rs201830102 C30Y Damaging  0.000 Deleterious -
10.863 

Probably 
damaging 

1.000 Disease 7 Disease 
 

8 

rs557248373 I33F Damaging  0.01 Deleterious -3.158 Probably 
damaging 

0.998 Disease 1 Disease 
 

7 

rs759079472 R29H Damaging  0 Deleterious -4.309 Probably 
damaging 

1.000 Disease 1 Disease 
 

7 

rs766249571 L75P 
 
L75R 

Damaging 
 
Damaging  

0 
 
0 

Deleterious 
 
Deleterious 

-6.975 
 
-5.991 

Probably 
damaging 
Probably 
damaging 

1.000 
 
1.000 

Neutral 
 
Disease 
 

2 
 
3 

Disease 
 
Disease 
 

3 
 
5 

rs776216030 C30R Damaging  0 Deleterious -
11.821 

Probably 
damaging 

1.000 Disease 
 

6 Disease 
 

8 

rs1054124819 P77S Damaging  0.01 Deleterious -7.936 Probably 
damaging 

0.999 Neutral 6 Disease 
 

4 

rs1227385544 C32R Damaging 0 Deleterious -
11.936 

Probably 
damaging 

1.000 Disease 
 

6 Disease 
 

8 

rs1340181005 M66T Damaging 0 Deleterious -3.979 Probably 
damaging 

0.968 Neutral 2 Disease 4 

rs1390990135 L45S Damaging 0 Deleterious -4.894 Probably 
Damaging 

0.984 Neutral 3 Disease  0 

rs1443390834 A64T Damaging 0.01 Deleterious -3.042 Probably 
Damaging 

0.993 Neutral 2 Disease 4 

rs1481961916 E61Q Damaging 0 Deleterious -3.000 Probably 
Damaging 

1.000 Neutral 5 Disease  6 

 
Table 2. Results of the PMUT server for the most deleterious nsSNPs. Amino acid substitutions with a prediction 
score of 0 to 0.5 are grouped as neutral, while pathological ones score from 0.5 to 1. 

Protein  Mutation  Prediction  
P02778 R29C 0.63 Disease 
P02778 R29H 0.42 Neutral  
P02778 C30Y 0.75 Disease  
P02778 C30R 0.75 Disease 
P02778 C32R 0.75 Disease 
P02778 I33F 0.63 Disease 
P02778 L45S 0.64 Disease 
P02778 E61Q 0.28 Neutral 
P02778 A64T 0.64 Disease 
P02778 M66T 0.25 Neutral 
P02778 L75P 0.75 Disease 
P02778 L75R 0.73 Disease 
P02778 P77S 0.62 Disease 
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Fig. 2. The heat map provided by the SNAP2 for the most deleterious nsSNPs. The map represents all the possible 
substitutions in every position. The severity and influence of each substitution are shown by specific colors; dark 
red means strong effect, white shows weak signals, and blue indicates no effect. Wildtype residues in each position 
are marked by black. (the color must be used). 
 

Table 3. The resultant probability scores for the most deleterious nsSNPs as provided by MutPred. All the changes 
showing a very high confident hypothesis are shown in bold. 

Mutation Mutpred score (g score) Molecular mechanism with p-value < 0.05 Probability P-value 
R29C 0.814 Altered Metal binding 0.49 5.1e-03 

Altered Transmembrane protein 0.34 4.9e-05 
Loss of Disulfide linkage at C30 0.12 0.04 

C30Y 0.955 Altered Metal binding 0.44 5.2e-03 

Gain of Strand 0.36 8.3e-05 

Altered Transmembrane protein 0.31 1.3e-04 

Loss of Disulfide linkage at C30 0.13 0.04 

I33F 0.619 Altered Transmembrane protein 0.29 3.5e-04 
Altered Metal binding 0.27 0.02 

Gain of Strand 0.27 0.03 

Gain of Disulfide linkage at C30 0.12 0.04 

Loss of GPI-(anchor amidation at N37) 0.01 0.03 

L75P 0.905 Loss of Disulfide linkage at C74 0.31 9.1e-04 
Gain of B-factor 0.26 0.02 

Loss of Strand 0.26 0.04 

Loss of Acetylation at K80 0.25 0.01 

Altered Disordered interface 0.23 0.03 

Altered Transmembrane protein 0.16 0.01 

L75R 0.897 Altered Metal binding 0.49 4.0e-03 
Altered Disordered interface 0.41 3.1e-03 
Loss of Disulfide linkage at C74 0.33 8.3e-04 
Loss of Strand 0.27 0.02 
Gain of Acetylation at K80 0.24 0.01 
Altered Transmembrane protein 0.17 0.01 

C30R 0.968 Altered Metal binding 0.44 5.2e-03 

Altered Transmembrane protein 0.28 3.8e-04 

Loss of Disulfide linkage at C30 0.13 0.04 

P77S 0.440 -   
C32R 0.958 Altered Metal binding 0.47 4.5e-03 

Altered Transmembrane protein 0.29 3.7e-04 

Loss of Disulfide linkage at C32 0.12 0.04 

Loss of GPI-anchor amidation at N37 0.01 0.03 

L45S 0.587 Gain of Intrinsic disorder 0.41 6.5e-03 

Altered Transmembrane protein 0.26 1.3e-03 

Gain of B-factor 0.26 0.02 

Loss of SUMOylation at K47 0.21 0.03 

A64T 0.538 Gain of B-factor 0.25 0.03 
Gain of SUMOylation at K69 0.20 0.03 
Altered Transmembrane protein 0.17 0.01 
Altered Stability 0.14 0.02 
Altered Metal binding 0.05 0.04 
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Stability changes determined  

Most of the mutated proteins that cause diseases 
display stability changes. Identifying the relation 
of structure and function of a protein is 
approachable after the prediction of protein 
stability. All the 10 most deleterious nsSNPs 
were submitted to both I-Mutant 3.0 and ERIS 
servers (utilizing flexible backbone and pre-
relaxation settings) to validate the free energy 
prediction. All the deleterious nsSNPs resulted in 
protein destabilization (Table 4). 

Conservation profile of the most deleterious 
nsSNPs in CXCL10  

The evolutionary conservation of each amino 
acid in every position in the proteins is of 
paramount importance for the maintenance of 
functional and structural properties. We used 
ConSurf to determine the conservation profile of 
the most deleterious nsSNPs determined in this 
research (Ashkenazy et al., 2016). Results 
obtained via ConSurf (Fig. 3) represented that 
R29 and L75 are conserved and functional 
residues, while C30, C32, L45, and A64 are 
predicted as structural (buried) residues and 
conserved. Based on the anticipation done by 
ConSurf, almost all the deleterious nsSNPs 
signified in this study are located in the 
conserved place. Since residue I33 has average 
conservation in the CXCL10 protein, we 
excluded it from further investigation. 
 

Table 4. Prediction of the protein stability upon 
amino acid substitutions by I-Mutant 3.0 and ERIS.  

Amino 
Acid 

Change 

I-Mutant 3.0 ERIS 
Stability 
changes 

Free 
energy 
(ΔΔG) 

prediction 

Mutation 
category 

Score 

R29C Largely 
Decrease 

-1.05 Destabilizing 3.32 

C30Y Largely 
Decrease 

-0.42 Destabilizing 4.11 

I33F Largely 
Decrease 

-1.75 Destabilizing 6.41 

L75P Largely 
Decrease 

-1.39 Destabilizing 4.97 

L75R Largely 
Decrease 

-1.30 Destabilizing 7.92 

C30R Largely 
Decrease 

-0.51 Destabilizing >10 

C32R Largely 
Decrease 

-0.59 Destabilizing 9.47 

P77S Largely 
Decrease 

-1.35 Destabilizing 5.49 

L45S Largely 
Decrease 

-2.22 Destabilizing 1.05 

A64T Largely 
Decrease 

-0.60 Destabilizing 7.58 

 

 
 

Fig. 3. ConSurf analysis of C-X-C motif chemokine 
10 precursor protein (Uniprot ID: P02778). 
Conservation grades are shown with a range of colors 
from blue, displaying the most variable residues 
(grade 1), white the intermediate ones (grade 5), and 
maroon the most conserved ones (grade 9). The most 
deleterious nsSNPs anticipated in this research are 
marked with red arrows. e: an exposed residue, b: a 
buried residue, f: a predicted functional residue, s: a 
predicted structural residue. (Color should be used). 

Structural modeling and superimposition of 
the most deleterious nsSNPs  

We first modeled the wild and mutant proteins of 
CXCL10, submitting the protein sequence 
without the signal peptide fragment to the I-
Tasser tool. The first model having the highest 
C-score and confidence was chosen 
(Supplementary Table 3 (available upon 
request)). Evaluating the superimposed structure 
of the native and mutant protein models (Fig. 4) 
showed that almost all the monomeric structures 
exhibited a typical chemokine fold, including a 
three-stranded β sheet overlaid by an α helix. 
R29C substitution showed changes in the N-
terminal end critical for receptor binding and 
modification in the site of the N-loop that is 
called the docking domain and is crucial for 
recognition of the receptor.  
The nsSNPs such as C30R and C30Y, which are 
vital for the formation of the cysteine bridges, 
with the high heavy chain and backbone RSMD, 
further showed alteration in the N-terminal 
region and some other structural changes. Both 
the L75P and L75R, showing high RMSD 
values, entail alteration in the N-terminal end 
and other conformational and structural 
modifications. The substitution P77S occurs in 
the proline residue, which has a significant role 
in the formation of turns and beta-turns in 
protein and may result in a significant change in 
the protein showing a high RMSD value after 
superimposition. The remaining amino acid 
substitutions, i.e. C32R, L45S, and A64T, had 
the lowest RMSD values among the others. The 
substitution R29C illustrated the highest RMSD 



Riahi and Emadi-Baygi, J Genet Resour, 2021; 7(2): 227-245 

236 

value followed by C30R, C30Y, and L75R, 
respectively. Hope explained about the reaction 
and physicochemical features of the 3D 
structures of the wild and mutated CXCL10. The 
results of all the 9 deleterious nsSNPs and 
description of changes in the native structure 
through the new residues are available as 
follows: We found that the substitutions such as 
R29C, C30Y, C30R, and C32R in the N-terminal 
receptor-binding motif 8RCTCISISN16 of the 
CXCL10 protein cause changes in the 
hydrophobic potential of the protein and 
destabilize it by damaging cysteine bridges 
which are of paramount importance for structural 
stability. 
 

 
Fig. 4. Superimposition of the 3D structure of the 

mutant (in red) on the wild-type CXCL10 protein (in 
blue) using Chimera. Evaluation of the superimposed 

structure of the native and mutant protein models 
showed that almost all the monomeric structures 
exhibited a typical chemokine fold including a three-

stranded β sheet overlaid by an α helix (for more 
information please refer to the main text). (The color 

must be used). Thus they may inhibit receptor 
binding of the protein and result in local and 
structural changes. Substitutions such as L75P 
and L75R cause protein folding problems 
because of the replacement of a small residue 
and positive charge in the core of the protein, 
respectively. Amino acid substitution P77S may 
disturb the specific conformation caused by 

proline residue, which is found in turns. The 
remaining amino acid substitutions in CXCL10 
protein, including L45S (by creating a space in 
the core of the protein) and A64T (by 
substituting a larger residue), lead to 
considerable structural change in the protein. 
The overlapped structures and the explementary 
results for all the nine deleterious nsSNPs are 
presented in Fig. 5. 

Functional SNPs of UTR regions 

We submitted all 195 UTR SNPs to the 
UTRscan server (Table 6). After the 
characterization of the functional elements 
presented in UTR regions, we saw that 2 SNPs, 
named rs1383287989 and rs1406377228, in the 
3′UTR region caused a change in the uORF 
(Upstream Open Reading Frames) element. The 
sequences that contain a start codon in the frame 
and a termination codon placed upstream or 
downstream of the main AUG are called uORFs. 
These elements can lessen the performance of 
translation initiation of the principal downstream 
ORF in unstressed circumstances (Barbosa et al., 
2013). 
Another SNP in the 3′UTR region 
(rs886636633) resulted in the gain of a new 
element named BRD-BOX (AGCTTTA). BRD-
BOX is a conserved motif in the 3'UTR area of 
Notch pathway target genes, such as members of 
the basic helix-loop-helix repressor family and 
the Bearded family, in Drosophila. There is one 
or several numbers of this element in 3'UTRs 
and affects post-transcriptional regulation 
negatively through impacting transcript stability 
and translation capability. This motif plays a role 
in the creation of RNA-RNA duplexes with the 
5' end of complementary miRNAs (Lai, 2002). 
 

Table 6. SNPs in 3′UTR related to the functional 
pattern change. 

SNP ID Nucleotide 
change 

UTR 
position 

Functional 
element change 

rs886636633 G/A 3′ UTR no pattern → 
BRD-BOX 

rs1383287989 A/C 3′ UTR uORF → no 
pattern 

rs1406377228 T/C 3′ UTR uORF → no 
pattern 
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Fig. 5. Overlapped structure of the native and mutant amino acids for the most deleterious nsSNPs obtained from 
HOPE. The native and mutant amino acids are shown in green and red, respectively. (the color must be used): A) 
The charge of the native (positive) and substituted (neutral) amino acids are different, and this may result in loss of 
interaction. There might be a lack of external interactions, for the native residue is bigger than the mutant residue. 
Moreover, the hydrophobicity of the wild and mutant reside differs (Probably Damaging); B) The arginine residue 
is big and has a positive charge while the cysteine is small and neutral. The wild-type residue is more hydrophobic. 
Mutation cause in loss of the cysteine bond (destabilization of the structure and Probably damaging); C) The 
arginine residue is big and has a positive charge while the cysteine is small and neutral. The wild-type residue is 
more hydrophobic. Mutation causes loss of the cysteine bond (destabilization of the structure and Probably 
damaging); D) The wild-type residue charge was neutral; the mutant residue charge is positive. The mutant residue 
is big. The wild-type residue is more hydrophobic (Damaging and mutation of 100% conserved residue); E) The 
mutant residue is small (space at the core of the protein). The mutant residue was not observed in other 
homologous proteins, but residues with some common properties were observed. Sometimes the mutation might 
occur without damaging impact for the protein; F) The mutant residue makes a positive charge in the buried part of 
the protein (protein folding problems). The mutant residue charge is positive and big. The mutation will cause loss 
of hydrophobic interactions (Probably damaging); G) The wild-type residue is more hydrophobic and bigger. The 
mutation can disturb the special conformation caused by a proline residue (Probably damaging); H) The mutant 
residue is small (mutation will cause space in the core of the protein). The wild-type residue is more hydrophobic 
(mutation will cause loss of hydrophobic interactions). Another residue type was observed often at this position in 
homologous sequences, but it was not similar to this mutant residue (Probably damaging); I) The mutant residue is 
big and will not fit and also it will cause loss of hydrophobic interactions. Neither this mutant residue nor other 
residue types with similar properties was not observed at this position in homologous sequences (Probably 
damaging). 
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Prediction of SNPs in 3’UTR region 

Expression of an mRNA may be up-regulated or 
down-regulated because of the influences the 
creation or removal of miRNA target regions 
may cause the interactions between the mRNA 
and a miRNA. Of 1012 SNPs characterized in 
the CXCL10 gene, 171 were in the 3′ UTR 
region. Among them, seven functional SNPs 

were anticipated to disrupt miRNAs conserved 
sites with a conservation score ≥ 2. Four out of 
those seven named SNPs might create eight new 
miRNA target sites. These SNPs may lead to an 
increase or decrease in the levels of the CXCL10 
protein by the creation and deletion of miRNA 
target sites. The results are presented in Table 7. 

 

Table 7. Seven functional SNPs that disrupt miRNAs conserved site as predicted by PolymiRTS database. The 
sequence related to each miRNA site is shown in miRSite. Capital letters represent the complementary bases of the 
seed region, and SNPs are shown in bold. 

dbSNP ID  miR ID  Conservation  miRSite  Function class 
rs191522507 hsa-miR-219a-2-3p  

hsa-miR-297  
hsa-miR-3149  
hsa-miR-567  
hsa-miR-675-3p 

5 
3 
3 
3 
3 

tacatACAATTCc 
tACATACAAttcc 
taCATACAAttcc 
tACATACAattcc 
taCATACAAttcc 

D 
D 
D 
D 
D 

rs182871280 hsa-miR-548ao-5p  
hsa-miR-548ax  
hsa-miR-5585-5p  
hsa-miR-8060 

3 
3 
3 
2 

tctTTACTTCAtg 
tctTTACTTCAtg 
tcttTACTTCAtg 
tctttaCTTCATG 

D 
D 
D 
D 

rs35795399 hsa-miR-302b-5p  
hsa-miR-302d-5p 

3 
3 

ttTTAAAGAatgc 
ttTTAAAGAatgc 

D 
D 

rs58658570 hsa-miR-624-5p 
hsa-miR-3121-5p 

2 
2 

gGGTACTAaggaa 
gggtaCAAAGGAa 

D 
C 

rs187517470 hsa-miR-3153  
hsa-miR-4668-5p  
hsa-miR-6730-5p  
hsa-miR-6733-5p  
hsa-miR-6739-5p 
hsa-miR-3202  
hsa-miR-4747-5p  
hsa-miR-5196-5p 

2 
2 
4 
2 
2 
4 
2 
2 

ctcacCTTTCCCA 
ctcaccTTTCCCA 
ctcACCTTTCcca 
ctcacCTTTCCCA 
ctcacCTTTCCCA 
ctcaCCCTTCCca 
ctcacCCTTCCCA 
ctcacCCTTCCCA 

D 
D 
D 
D 
D 
C 
C 
C 

rs147499398 hsa-miR-4511  
hsa-miR-548b-3p 
hsa-miR-3914 

2 
2 
2 

atGTTCTTAgtgg 
atGTTCTTAgtgg 
atGTTCCTAgtgg 

D 
D 
C 

rs148141229 hsa-miR-29a-3p  
hsa-miR-29b-3p  
hsa-miR-29c-3p  
hsa-miR-5682  
hsa-miR-6871-3p 
hsa-miR-183-5p  
hsa-miR-593-5p  
hsa-miR-942-3p 

9 
9 
9 
9 
9 
3 
9 
3 

aGGTGCTAtgttc 
aGGTGCTAtgttc 
aGGTGCTAtgttc 
aGGTGCTAtgttc 
aGGTGCTAtgttc 
agGTGCCATgttc 
aGGTGCCAtgttc 
aggtGCCATGTtc 

D 
D 
D 
D 
D 
C 
C 
C 

 
CXCL10 deregulation and correlated survival 
rate of cancerous patients  

Here we carried out the Kaplan-Meier plot 
analysis to figure out the prognostic value of 
CXCL10 in 4 different cancers. Based on the 
hazard ratio and log-rank P, the Kaplan Meier 
plots (Fig. 6) showed an association between 
ovarian and gastric cancer with CXCL10 gene 
deregulation. Data showed that the high 
expression of CXCL10 with a hazard ratio 

(HR) = 0.81 (0.7-0.92) and log-rank p-
value = 0.0019 is related to a higher survival rate 
in ovarian cancer; furthermore, in the matter of 
gastric cancer patients, higher expression of 
CXCL10 having HR = 0.79 (0.67-0.94) and log-
rank p-value = 0.0078 decreases the risk (higher 
survival rate). Therefore, according to this study, 
the deregulation of CXCL10 seems to be a good 
prognostic marker for ovarian and gastric cancer, 
and since SNPs may deregulate the expressed 
protein, the 9 nsSNPs identified in this research 
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might have an indirect relation with the 
occurrence of the above-mentioned cancers. 

Discussion 

Undoubtedly, genetic differences in non-coding 
regions can result in phenotypic effects. The 
reason is that methods for the recognition of 
disease-related regulatory variants are presently 
the main focus (Fernald et al., 2011; Shendure et 

al., 2015). Alteration in the protein sequence 
affects protein structure, stability, and function. 
Non-synonymous SNPs can have adverse 
impacts on the genotype and phenotype of any 
protein and might be the basis for various 
diseases, such as cancer (Kulshreshtha et al., 
2016). 

 

 
Fig. 6. Kaplan-Meier plotter was utilized to identify the association of deregulation of the CXCL10 gene with the 
overall survival of patients with different cancer types. a. Breast cancer plot. b. Gastric cancer plot. c. Lung cancer 
plot. d. Ovarian cancer plot. (Color should be used). 
 
There are several studies on the expression of 
CXCL10 in various disorders. Of note, IDH1-
mutated glioma tumors are less efficiently 
infiltrated by CD8+ T cells, participating in 
tumor rescue. In the tumors, the secretion of the 
chemokines CXCL9 and CXCL10 was limited 
due to the reduction of the expression of STAT1 
(Lucca et al., 2017). Furthermore, the serum 

CXCL10 concentration was addressed to be 
related to the count of circulating lymphocytes in 
head and neck cancer with radiation therapy. 
Immune cells represent an anti-tumor impact on 
cancer cells via paracrine CXCL9, -10, -11/ 
CXCR3 axis in tumor models. Arenberg (2010) 
et al. noted that the application of 
CXCL10 intratumorally led to superior survival 
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of mice vaccinated with carcinoma cells of the 
lung (Arenberg et al., 2010). The application of 
retroviral CXCL10 gene transduction showed the 
suppression of tumor growth in models of 
various tumors (Tokunaga et al., 2018). 
Moreover, CXCL10 overexpression leads to 
reduced tumor burden and lethal ascites 
aggregation in the ID8 syngeneic murine model 
of high-grade serous ovarian cancer/HGSC. 
Decreased CXCL10 expression in tumors from 
KD mice leads to increased ascites aggregation 
and disease progression in contrast to the 
controls. CXCL10 is a positive identifier of anti-
tumor immune responses in HGSC tumor 
immune microenvironment and disease 
progression (Au et al., 2017). However, 
polymorphisms located on the CXCL10 gene 
have not been considered until now. Therefore, 
in this research, 68 missense SNPs on the 
CXCL10 gene were retrieved from dbSNP, and 
several in silico tools were used to predict the 
functional and structural consequences of these 
missense SNPs on the CXCL10 gene. 
Due to the extensive prevalence of SNPs in the 
human genome, it is more reasonable to utilize 
bioinformatics tools, sequence or structural 
based, to screen potentially deleterious SNPs 
before wet laboratory experiments (Mah et al., 
2011). Sequence-based algorithms predict all 
kinds of impacts at the protein level in proteins 
with known relatives, whereas they cannot 
identify the related mechanisms responsible for 
the current phenotype. On the other hand, the 
structure-based tools can shed light on the 
underlying mechanisms (Yue et al., 2005). 
However, their main limitation is being unable to 
work in the lack of 3D structures. In the current 
research, several prediction algorithms (sequence 
or structural based) were used to multiply the 
validity of the results, since every tool has 
specific advantages and disadvantages, make it 
different from the others, and apply numbers of 
various algorithms can help to predict the impact 
of each SNP with more confidence. Moreover, It 
was well recognized that the aggregation of 
sequence homology and structural homology-
based servers, including SIFT and PolyPhen-2, 
obviously correlate damaging/deleterious 
prediction scores of an SNP in line with 
experimental/laboratory data derived from site-
directed mutagenesis and clinical association 

analyses (Wang et al., 2001; Wang et al., 2009; 
Dong et al., 2015; Karbassi et al., 2015). Ten out 
of 68 missense nsSNPs were anticipated to be 
most deleterious according to the 7 different 
algorithms (SIFT, PROVEAN, PolyPhen-2, 
SNPs&GO, PhD-SNP, SNAP2, and PMut). 
Three motif sequences are present in the 
CXCL10 protein (the number identified for each 
residue is given without considering the signal 
peptidase region). RCTCISISN 8-16, which 
comprises motif 1, encodes the N-terminal 
region and contains the first two cysteines 
(Clark-lewis et al., 2003). Substitutions 
rs11548618, rs201830102, rs776216030, 
rs1227385544, and rs557248373 are located in 
this region. A monomeric structure of CXCL10, 
which was found by NMR, illustrated that the N-
terminal region, which has been reported to be 
crucial for receptor binding, forms a 
hydrophobic cleft with a 30s-loop. Recent 
studies have shown that residue R8 
(rs11548618), locating in the 30s loop, may be 
important in receptor binding (Booth et al., 
2002). Moreover, residues C30 and C32 are 
substituted in rs201830102, rs776216030, and 
rs1227385544 polymorphisms, respectively. 
These residues form the C-X-C chemokine motif 
and disulfide bridges (30:57 and 32:74), which 
stabilize the 3-D structure of the protein 
(Swaminathan et al., 2003). 24LEKLEIIPAS 
QFCPRVEIIATM45 sequence is the second motif 
that spans the first two beta-strands and parts of 
the docking domain, essential for receptor 
binding (Swaminathan et al., 2003), and 
substitutions rs1390990135, rs1443390834, and 
rs1481961916 are located in this motif. The last 
motif (47KKGEKRCLNPESKAIKNLL65) spans 
a part of the C-terminal helix and is discovered 
to be vital for binding to the heparin (Proudfoot 
et al., 2001). Two missense SNPs rs1054124819 
and rs766249571, are sited in this part of the 
gene. Campanella et al. indicated that Arg-8, 
residues 22-26 and 46-47, located in the loop 
regions of mouse IP-10, are all crucial for 
receptor binding and signaling (Campanella et 
al., 2003). A number of immunological studies 
determined that residues 20-36 in the human 
CXCL10 are involved in CXCR3 binding 
(Jabeen et al., 2008). Furthermore, Yang et al. 
designed various forms of CXCL10 having 
mutations in the CXCR3 and glycosaminoglycan 
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binding sites, and they confirmed that the total 
lack of receptor binding site but not the 
glycosaminoglycan binding site inhibits tumor 
angiostatic activity of the protein (Yang et al., 
2004). Therefore, the existence of the deleterious 
nsSNPs studied in this research in the N-terminal 
region, GAG binding regions, and critical motifs 
of the protein might inhibit GAG and receptor 
binding, and finally, the angiostatic activity of 
the protein. 
The stability of the protein structure is essential 
for its function, and missense SNPs destabilizing 
protein structure could cause human monogenic 
disease (Yue et al., 2005). Our stability analysis 
indicated that almost all of the identified 
deleterious nsSNPs deteriorate protein stability. 
Under these circumstances, molecular 
mechanisms predicted by MutPred2 such as 
altered transmembrane protein (resulted from 
R29C, C30Y, C30R, and C32R), altered metal 
binding (cause of R29C, C30Y, L75R, C30R, 
and C32R), gain of strand (C30Y), altered 
disordered interface (L75R), and loss of disulfide 
linkage (L75P and L75R) can be regarded as a 
consequence of decreased stability.   
Moreover, given these points that conserved 
residues are vital for the function and three-
dimensional structure of a protein, thereupon 
polymorphisms in these residues might result in 
the impairment of conformation, and 
consequently affinity and function of the protein 
(Miller et al., 2001). Our results indicate that 
since all the identified nsSNPs except for one are 
located in the conserved region of the protein, 
thereby they may have a major impact on the 
impairment of molecular mechanisms. 
Furthermore, all the identified most deleterious 
nsSNPs led to local and structural changes based 
on having high RMSD values. Considering these 
changes between the native and mutant proteins, 
it is reasonable to conclude that they can lead to 
various consequences for the destabilization of 
protein structure or defective binding to receptor 
and heparin. 
Untranslated regions are responsible for 
translation regulation and transcript stability 
control (Mignone et al., 2002). Regarding our 
analysis with UTRscan, we found that two SNPs 
were related to the functional pattern change of 
uORF; henceforth, they might be correlated with 
significantly reduced protein expression levels 

(Barbosa et al., 2013). Furthermore, another 
SNP in 3′UTR (rs886636633) resulted in the 
gain of a BRD-BOX element. Notably, this 
element negatively affects post-transcriptional 
regulation by changing transcript stability and 
translation potency (Lai, 2002).  
Equally important, we found functional SNPs in 
the 3′ UTR region of the CXCL10 gene that 
disrupts/creates miRNAs conserved sites. Since 
miRNAs affect gene regulation by mRNA 
degradation (O’Brien et al., 2018), both creation 
and disruption of miRNA target sites can 
influence the expression level of CXCL10 and 
thereby cause a range of disorders.  
With all things in mind, our approach identified 
the most deleterious nsSNPs mapped on the 
CXCL10 gene, perturbing its characteristics at 
both structural and functional levels. Since 
structural and functional alterations disturb gene 
expression, we aim to see if there are any 
changes in the gene expression in cancerous 
tissues due to the genetically unstable nature of 
cancer. Using the Kaplan-Meier plot, we showed 
that the deregulation of this gene is related to 
gastric and ovarian cancers. Markedly, the high 
expression of CXCL10 is correlated with higher 
survival rates in both mentioned cancers. 
Qingyuan Meng et al. confirms the correlation 
between the overexpression of CXCL10 and 
gastric cancer. They revealed that CXCL10 is a 
potent chemoattractant for T lymphocytes and 
inhibits tumor growth by suppression of 
angiogenesis (Meng et al., 2020). Besides, Zhao 
et al. (2015) figured out that the overexpression 
of the CXCL10 gene in a model of rodent 
cervical cancer makes the tumor more sensitive 
to radiotherapy (Zhao et al., 2015). In the same 
vein, the correlation between CXCL10 and 
ovarian cancer revealed that the overexpression 
of the CXCL10 gene would result in tumor 
suppression by the recruitment of tumor-
infiltrating lymphocytes (Bronger et al., 2016). 
To sum up, it can be postulated that our 
identified deleterious nsSNPs perturbing the 
structure and function of the CXCL10 gene have 
not occurred in gastric and ovarian cancer with 
more survival rates. Our original implemented in 
silico approach showed that all identified 
nsSNPs have possibly major impacts on the 
structure and function of the CXCL10 protein. 
Furthermore, the examined SNPs in the 3 UTR 
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of the CXCL10 transcript affect its post-
transcriptional regulation by the emergence of a 
BRD-BOX element and/or alteration of miRNA 
target sites. On the whole, these alterations may 
contribute to the etiology of various diseases, 
including cancers. 

Conclusion 

We identified the most deleterious nsSNPs all 
occurred in the conserved region of the CXCL10 
protein and SNPs in the 3 UTR region of its 
transcript that affects the gene product at both 
RNA and protein levels. We postulated that 
under those circumstances, the structure and 
function of the CXCL10 could alter and lead to 
various pathophysiological conditions. As we 
focused on the dried experiments to analyze the 
SNPs of the CXCL10, our work calls for further 
wet experimental studies to substantiate the 
impact of most deleterious substitutions on the 
function and structure of the CXCL10 gene 
products to shed light on their role(s) in various 
pathophysiological conditions. 
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