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 Gastric cancer (GC) is one of the leading causes of cancer mortality, 

worldwide. Molecular understanding of GC’s different subtypes is still dismal 

and it is necessary to develop new subtype-specific diagnostic and therapeutic 

approaches. Therefore, developing comprehensive research in this area is 

demanding to have a deeper insight into molecular processes, underlying these 

subtypes. In this study, a three-step methodology was developed to identify 

important genes and subnetworks in two subtypes of GC (TP53+ and TP53-). 

First, weighted gene co-expression network analysis was performed to explore 

co-expressed gene modules in both subtypes. Afterward, the relationship of 

each module with the tumor pathological stage (as a clinical trait indicating 

tumor progression) was studied by decision tree machine learning algorithm 

and the best predicting module was selected for further analysis (modules with 

241 genes for TP53+ and 1441 genes for TP53- were identified). Subsequently, 

a motif exploring and motif ranking analysis was implemented to explore 

three-member signature gene motifs in the selected modules' biological 

network. These motifs may have key regulatory roles in the studied GC 

subtypes. Motif members of TP53-
  mostly contain MAPK signaling pathway 

genes which show their key role in this subtype of GC. In the case of the TP53+ 

subtype, our findings demonstrated that alternative splicing and SNARE 

proteins could prompt the initiation and advancement of the disease. These 

findings can be used to develop new diagnostic and therapeutic approaches 

based on the personalized medicine concept. This methodology could be 

implemented to unravel underlying mechanisms and pathways in other 

complex phenotypes and diseases. 
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Introduction 

Gastric cancer (GC)  is one of the most common 

causes of cancer mortality, worldwide (Ferro et 

al., 2014). Based on the global cancer statistics 

2018, 1,000,000 newly diagnosed cases and an 

estimated 783,000 death (one in every 12 deaths, 

globally), making it the fifth most frequently 

diagnosed and the third leading cause of cancer 

death (Bray et al., 2018). With 11644 new cases 

and 8965 death, gastric cancer is the second most 

frequently diagnosed and the first leading cause 

of cancer death in Iran (Bray et al., 2018). There 

are serious challenges in GC treatment due to the 

poor prognosis of patients with advanced gastric 

cancer. Therefore, when the patients are 

diagnosed, they are most likely in the advanced 

stages of GC that leads to limited treatment 

options for patients and consequently a high 

mortality rate for GC patients. Since GCs 

molecular nature is not fully understood, further 

research on its molecular nature is required to 
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find novel biomarkers for better prognosis hence 

better treatment of GC  (Shimizu et al., 2017). 

The poor prognostics of GC could be the result 

of high clinical and pathological heterogeneity of 

the tumor (Cristescu et al., 2015; Gullo et al., 

2018). Recent efforts to classify GC based on 

their molecular characterization into molecular 

subtypes has made it possible to avoid this 

heterogeneity and analyze each subtype 

separately. This effort is an essential step 

towards developing personalized medicinal 

treatment of gastric cancer (Lin et al., 2015). A 

classification study based on gene expression 

data on gastric cancer was done by Asian Cancer 

Research Group in which four molecular 

subtypes were introduced; microsatellite 

instability (MSI), microsatellite stability 

(MSS)/epithelial to mesenchymal transition 

(EMT), MSS/TP53+, MSS/ TP53-. These 

subtypes have various molecular alterations, 

disease progression, and prognosis. Each subtype 

differs from the others based on their molecular 

characterization (Cristescu et al., 2015). 

MSS/ TP53+ and MSS/ TP53- subtypes have 

been selected for further study, both subtypes are 

classified based on TP53 activity which is the 

most frequently mutated gene in GC. 

MSS/Tp53+ group has intact TP53 activity and 

MDM2 overexpression (Cristescu et al., 2015). 

MSS/Tp53- group has genomic instability and 

TP53 mutation and recurrent amplification 

(Cristescu et al., 2015). Despite this molecular 

subtyping our knowledge of different biological 

processes and pathways for each subtype is still 

dismal and therefore, systematic approaches 

including high-performance computational 

methods can give us a great perspective about 

the molecular mechanism behind the initiation 

and progression of different subtypes of TP53 

activity related subtypes of gastric cancer. To 

gain such molecular understanding, the use of 

high throughput data such as microarray data and 

analyzing gene expression profiles has immense 

importance. Microarray data analysis gives out 

information regarding the complete transcription 

profiles of the cancer cells. Proper use of this 

data in a certain computational methodology 

could result in a better understanding of the 

biological processes and pathways underlying 

the progression of these sub-types. Also, 

signature genes and biomarkers in terms of 

cancer prognosis and progression can be 

explored (Kim et al., 2004).  

The weighted gene co-expression network 

analysis (WGCNA) is a network-based analysis 

that uses transcriptomics data to find highly co-

expressed gene modules. Modules are groups of 

genes whose expression profiles are highly 

correlated across the samples (Zhang and 

Horvath, 2005) hence these genes are involved 

in certain biological processes and pathways. 

Moreover, a supervised decision tree algorithm 

allows building simple classifiers with gene 

expression data that can assign a label (such as 

target clinical traits). Supervised decision trees 

have been widely used for the classification of 

gene expression data (Dettling and Bühlmann, 

2003). A developed decision tree model (based 

on a certain train set) can predict a target clinical 

trait with a particular prediction accuracy (based 

on a certain test set) in which demonstrates 

predictor variable capability to model a certain 

tree to predict a target variable. The tumor 

pathological stage can be used as an indicator of 

the advancement of the disease and may help the 

physician to predict how quickly cancer would 

spread, therefor this clinical trait is important in 

cancer prognosis (Edge and Compton, 2010). 

With the integration of external biological 

information, the implemented classifiers output 

has a necessary connection with the biological 

information and it can give an insight on the 

functional annotation of the data (Hira and 

Gillies, 2015) and directs the computational 

methodology towards certain biological 

information which determines cancer 

progression clinically.  

We have developed a two-step workflow to 

explore significant gene signatures in two gastric 

cancer subtypes in this study (Fig. 1). First, we 

implemented a network-based approach 

(WGCNA) on the transcriptomics data of two 

subtypes of GC (MSS/ TP53+, MSS/ TP53-). 

WGCNA was used to configure important co-

expressed networks (modules) for each subtype 

and then based on a machine learning approach 

(decision tree) we chose the most important 

module based on its ability to predict tumor 

pathological stage for each subtype. In the next 

step using the STRING database, we configured 

conserved experimentally validated interaction 

networks for the selected modules (based on the 
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accuracy of predicting the tumor pathological 

stage) (Szklarczyk et al., 2015). Since both 

modules contained a large number of genes and 

hence interactions (MSS/ TP53+: 242 genes, 

MSS/ TP53-: 1449 genes) a motif detection and 

motif ranking analysis was performed to explore 

the most important gene signatures for each 

subtype.  

The developed workflow was led to introduce 

five significant 3-node gene motifs for two 

molecular subtypes of gastric cancer, which can 

be considered as potential diagnostic and 

therapeutic markers. The developed 

methodology can also be used in the case of 

other complex biological phenotypes to unravel 

important signatures. 

 

 

 
 

Fig. 1. Data analyzing workflow: Panel (A) shows the steps involved with data preprocessing including data 

normalization and feature filtering for GC subtype MSS/TP53+ and MSS/TP53; Panel (B) shows the construction 

of weighted gene co-expression network and the steps of model tuning. The data is split into training and test sets. 

Models are tuned based on the training set and evaluated using the test set. Modules which best predict clinical trait 

using decision tree were selected and gene regulatory network analysis was performed, respectively; Panel (C) 

contains the motif exploring and motif ranking steps. 

 

Materials and Methods 

Datasets 

The gene expression profile with the GSE62254 

accession number from the Gene Expression 

Omnibus (GEO) database was used in this study. 

This dataset contains expression and clinical data 

for 300 primary gastric cancer (GC) patients. 

The Asian cancer research group defined 4 

distinct GC molecular subtypes (MSI, 

MSS/EMT, MSS/TP53+, TP53+) from these 

samples which MSS/TP53+ and MSS/TP53- 

subtypes (include 79 and 107 samples 

respectively) were analyzed in this study 

Data preprocessing 

The R programming language (version 3.4.2) 

was used for statistical analysis in this study. 

preprocessing and normalization of raw data 

were performed using the “oligo” R package 

(Carvalho and Irizarry, 2010). The used 

microarray platform (Affymetrix human genome 

U133 plus 2.0 array) contains 54675 annotated 

genes. To decrease the number of input genes 
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and to avoid noisy results in WGCNA, some 

filtering methods should be done. First, we used 

hgu95av2.db R package and gapFilter from gene 

filter R package to select that one which has the 

most value of variance between Affymetrix IDs 

of one Entrez ID. After removing low-expressed 

genes the genes that had expression value more 

than mean in at least %25 of samples, selected. 

Using these filtering methods allows us to 

decrease the number of genes to 10377 and 

10308 in subtypes TP53- and TP53+ 

respectively. 

Construction WGCNA 

The WGCNA for each subtype were constructed 

using the WGCNA-R package (Langfelder & 

Horvath, 2008). This procedure requires the 

following steps: Construction of a primary 

weighted co-expression network (similarity 

matrix) using Pearson’s correlation coefficients 

for gene pairs. 
 

 
 

The  is the similarity and cor(i,j) is the 

Pearson correlation of ith and jth genes. 

By raising the similarity measure to the power β, 

adjacency for a weighted co-expression network 

can be calculated by the ai j = | |β formula. 

Scale-free topology and power-law distribution 

of degree are key characteristic properties of 

gene co-expression networks. To construct the 

adjacency matrix, we selected the β power which 

complies with the following standards: 

1. R2 > 0.8 

2. High mean connectivity 

3. The slope of the regression line between 

log10(p(k)) and log10(k) should be near -1 

Network modules 

Clustering genes into highly co-expressed gene 

modules is the most used application of 

WGCNA. To grouping genes, we need an 

average linkage hierarchical clustering to 

accompany by a topologically based 

dissimilarity function. The topological overlap 

matrix (TOM) combines the connection strength 

between a pair of genes with their connections to 

other genes and the dissimilarity which 

calculated using TOM is considered as input in 

average linkage hierarchical clustering. Modules 

are branches of the resulting cluster tree and the 

cut-tree hybrid method was used to choose a cut-

off height and minimum module size to identify 

modules. Dissimilarity measure based on TOM 

calculated as follow: 

dissTOMij = 1- TOMij = 1-  

Where ki =  indicates the network 

connectivity. 

Decision tree machine learning algorithm 

The decision tree method was used as a 

predictive machine learning technique. This 

method was implemented to select the most 

informative module in each subtype which can 

predict the tumor pathological stage more 

accurately. The R implementation of the CART 

algorithm (Decision tree is also known as 

Classification and Regression Trees (CART)) is 

called RPART (Recursive Partitioning and 

Regression Trees) that is available in “rpart” R 

package. A 10-fold cross-validation method was 

performed to evaluate model accuracy. In this 

analysis, the data set was split into 10 segments 

randomly that 9 of them were training data and 

the 10th was test data. The CART modeling via 

rpart method was used to build a prediction 

model using training data for each module of 

subtypes. Then, models were evaluated by cross-

validation analysis. The module with the highest 

prediction accuracy of each subtype was selected 

for subsequent analysis. caret (Kuhn, 2013) and 

rpart R packages were used to implement the 

decision tree algorithm in R. 

STRING database 

The STRING database is a precious global 

resource for the exploration and analysis of 

functional gene/protein interactions (Mering et 

al., 2003). We use STRING to find conserved 

experimentally validated gene-gene interaction 

networks for the selected modules in the 

previous step. To create a STRING network the 

list of genes that present in the selected modules 

are entered into the STRING database to create 

conserved experimentally validated networks. 

Network motif identification 

Networks consist of smaller and repetitive 

structural units which are called a motif. Motifs 
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have an important role in biological networks 

and it is suggested that they accomplish 

overriding functions in biological networks. In 

this study, Cytoscape (Szklarczyk et al., 2016) 

NetMatchStar plugin (Rinnone et al., 2015) was 

used to find 3-node 3-edge network motifs in the 

selected gene regulatory networks for each 

subtype. 

Motif ranking 

To find the most important motifs in the 

respected networks, a previously developed 

motif ranking scheme by Khan et al. was 

implemented. The scheme is based on different 

topological and biological properties of involved 

genes in each motif. These properties contain (i) 

Topological parameters of Motif nodes including 

node degree and betweenness centrality, (ii) 

presence of motif genes in KEGG’s “Pathways 

in cancer” pathway (KEGG: hsa05200), (iii) the 

gene prioritization score from Cytoscape GPEC 

plugin (Le and Pham, 2017); and (iv) gastric 

tumor subtype-specific gene expression log2 fold 

change in the transition from normal gastric 

tissue to tumor phenotype. To rank the explored 

motifs based on the mentioned parameters, the 

weighted multi-objective function was applied in 

the following formula. 
 

 
 

GSij is grade score for each motif (i= 1… n) in 

different weighting scheme (j= 1… 13) as said in 

supplementary Data1. Different weighting values 

including w1j to w4j are used to strike importance 

of used factors, 〈nD〉i: average node degree for 

motif’s node, 〈nB〉i: average betweenness 

centrality of each node in a motif, 〈PC〉i: number 

of genes in a motif involved in “pathways in 

cancer” KEGG pathway, 〈GPS〉i: average gene 

prioritization score obtained from GPEC, 

〈|LFC|〉i: average absolute log2 fold change for 

the motif I (Khan et al., 2017). Five different 

sets of weighting scenarios including 13 

different weighting schemes were applied (Table 

1) to remove biases between used parameters in 

motif prioritization. Each set pays more attention 

to specific parameters in Eq. 1. In the first set, 

only one parameter is more important for 

ranking. In sets 2-4, two, three, and four 

parameters are important respectively, and 

constantly have higher weights to the absolute 

LFC of the motif to explore tumor subtype-

specific top-ranked motifs. In the fifth set, equal 

weights are allocated to all the parameters. These 

weighting schemes lead to a 13 ranking score for 

each motif. After removing duplicated motifs, 

we selected five top motifs from 13 ranking 

score output to further analysis. 
Table 1. Weighting scenarios for motif ranking. 

Sets w1 w2 w3 w4 

 1 0 0 0 

Set 1 0 0 1 0 

 0 0 0 1 

 1.4 0 0 3.4 

Set 2 0 1.4 0 3.4 

 0 0 1.4 3.4 

 1.8 1.8 0 3.4 

Set 3 1.8 0 1.8 3.4 

 0 1.8 1.8 3.4 

 1.16 1.16 1.8 3.4 

Set 4 1.16 1.8 1.16 3.4 

 1.8 1.16 1.16 3.4 

Set 5 1.4 1.4 1.4 1.4 
 

 

Results 

WGCNA 

As mentioned in the methods section, to avoid 

the noisy result in WGCNA analysis, we applied 

a filtration step on expression data to reduce the 

number of genes. This step reduced the number 

of genes from 54675 to 10377 and 10308 in 

Tp53- and Tp53+ subtypes, respectively. The co-

expressed gene modules were identified using 

the WGCNA R package. The most important 

step in WGCNA is choosing the power value, 

which has to satisfy scale-free topology and 

power-law distribution of degree in co-expressed 

modules. Eleven and 12 co-expression modules 

were identified using power 4 and 5 

(Supplementary Table 1) in subtypes Tp53- and 

Tp53+, respectively. Modules are shown in 

different colors in cluster genes dendrogram for 

each subtype (Fig. 2). 

Decision tree 

The decision tree algorithm was implemented to 

find out the best predictor modules among 

identified modules to predict the tumor 

pathological stage. Decision trees for each 

module constructed by training data and the 

accuracy of each tree were calculated using test 

data (Table 2). As shown in table1, module 
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brown in subtype Tp53- and module green-

yellow in subtype Tp53+ had the highest value 

of accuracy among modules and this means that 

these modules can predict the pathological stage 

of the tumor precisely. 

STRING database 

After identification of the most significant 

modules for prediction of tumor pathological 

stage, the STRING database was used to explore 

conserved experimentally validated gene-gene 

interaction networks from the identified modules 

(brown and green-yellow modules for TP53- and 

TP53+ subtypes, respectively) in fig. 3. 
 

Table 2. The table shows identified modules for each 

subtype. * 

Modules TP53- Tp53+ 

 Freq Accuracy* Freq Accuracy**  

Black 497 31.25 504 40.74 

Blue 1600 28.12 1906 29.63 

Brown 1448 83.02 1617 25.93 

Green 940 31.25 769 48.15 

Greenyellow - - 241 55.56 

Grey 2 46.88 110 48.15 

Magenta 340 34.38 342 29.63 

Pink 380 15.62 502 22.22 

Purple 231 18.75 314 33.33 

Red 600 21.88 603 25.93 

Turquoise 2939 34.38 2617 40.74 

Yellow 1400 34.38 783 40.74 
*Freq column represents the number of genes for each module in a 
specific subtype and the second column shows obtained accuracy 

from the decision tree for each module; **Accuracy=% 

 
 

Network Analysis 

After constructing a conserved gene regulatory 

network for each module, via STRING, a 3-edge 

3-node motif exploring was performed 

(Supplementary data1). These motifs constitute 

basic regulation and protein organization 

patterns into modules. They represent the 

multiplexes of gene interactions that work 

together as a multi-component machine 

(Yeger-Lotem et al., 2004). For the green-

yellow module interaction network in TP53+ 

we identified 17 motifs and for the brown 

module interaction network in TP53- we 

identified 1582 motifs, respectively (see 

supplementary data 1). From the identified 

motifs, we aimed to find the most important 

ones in each network. Towards this end, a motif 

ranking scheme using a multi-objective function 

for motif prioritization was performed for both 

interaction networks (supplementary data1). 

Motif ranking was based on both topological 

and biological parameters. Subsequently, we 

took the top 5 ranking motifs for each subtype 

(each containing three genes) and analyzed 

their enrichment and annotation regarding how 

they relate to the advancement of GC (tumor 

pathological stage). Some of the genes in these 

motifs were repeated constantly and 

constructed a sub-network in each subtype. 

These sub-networks may have important 

regulatory roles in both GC subtypes.  

 
 

 
Fig. 2. Gene dendrogram of TP53- and TP53+ gastric cancer subtypes: The hierarchical clustering tree was made 

using the dissimilarity measure based on Topology Overlap Matrix (dissTOM) of genes' expression values. The 

dynamic tree-cutting algorithm was used to create modules using the hierarchical clustering tree. This algorithm 

puts the genes with the lowest dissTOM in the same modules. 11 and 12 modules were identified for TP53- and 

TP53+ respectively. Each color is assigned for each module as an identifier. The colored row below the 

dendrogram shows the merged modules.  
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Discussion 

Heterogeneity of gastric cancer has led to 

challenges in treating GC patients and it is one of 

the major reasons for poor clinical outputs of GC 

therapy. Therefore, in this study with the use of 

high-throughput data analyzing we aimed to 

pave the way to explore better prognostic 

biomarkers and gene signatures. In this study 

exploration of co-expression gene modules 

constructed from Transcriptomics data of 2 GC 

subtypes took place. Afterward, the module that 

was best able to predict the pathological stage of 

the tumor was identified using a machine 

learning approach (decision tree algorithm). The 

experimentally validated gene network of the 

selected module that was extracted from the 

STRING was analyzed to find the most 

significant functional motifs. These motifs are 

structural parts of the gene expression network 

which have important regulatory and phenotypic 

outcomes. All of the explored genes in the five 

top-ranked motifs for TP53- subtype (Table 3) 

have already been reported for GC in previous 

studies except ATP6V0A1 and ATP6AP1.  This 

shows the robustness of the computational 

approach which led to genes that are already 

known responsible for the progression of GC.  

All 3 genes of Motif 1 are members of the 

Mitogen-activated protein kinases family and the 

main MAPK pathway which is p38. MAPK14 is 

one of the four p38 MAPK members that as 

shown in Fig. 3, is repeated in 3 top motifs. 

Thereby, this gene has a key role in the 

represented sub-network (TP53- brown module). 

In response to inflammatory cytokines or 

environmental stresses, MAP2K3 or MAP2K6 

activate MAPK14 by dual phosphorylation of the 

Thr-Gly-Tyr amino acid motif.  A member of the 

MAP3K family such as MAP3K7 activates the 

MAP2K tier, depending on the tissue and the 

stimuli type (Pritchard and Hayward 2013). 

Several studies have reported these genes as 

gastric cancer prognostic markers (Katoh and 

Katoh,  2009; Liu et al., 2014; Parray et al., 

2014). Based on this, the explored motif which 

it’s members are already known as responsible in 

GC development is capable of regulating and 

advancement of GC. However, their accurate 

course of action in GC progression and their 

ability to predict the tumor pathological stage 

can be studied more thoroughly in future studies. 

The repetition of these genes in our results is an 

indicator of the robustness of the analytical 

approach that took place in this study. All genes 

in motif 2 encode the V0 subunit of V-ATPase 

(Xu et al., 2013) that they have not reported as 

GC related genes. However based on previous 

studies it is stated that they have a role in other 

types of cancer (Antonacopoulou et al., 2008; 

Arif et al., 2015; Hsin et al., 2012). The effect of 

these genes and the underlying mechanism 

leading to GC progression is yet to be 

distinguished. However, they can be proper 

targets for future experimentations of GC related 

studies. The oncogenic behavior of the respected 

genes is proven in other previous studies but 

their course of action in GC progression is yet to 

be known.  

  

 

Table 3. Five top-ranked motifs for subtypes TP53+ and TP53-. 

 

 

Top5 motifs GENE1 GENE2 GENE3 Ranking Score 

TP53+ 

1 VAMP8 SEC22C USO1 0.987451 

2 RBM22 SRRM2 SF3B1 0.980769 

3 SRRM2 PRPF6 SF3B1 0.932967 

4 HNRNPC SRRM2 SF3B1 0.928079 

5 HNRNPC RPL6 SRRM2 0.861993 

TP53- 

1 MAP2K6 MAPK14 MAP3K7 0.984842 

2 ATP6V0E2 ATP6V0A1 ATP6AP1 0.981421 

3 UBC HSP90AB1 RPS6 0.979435 

4 PTPN11 MAP2K1 MAPK14 0.977016 

5 MAPK14 MAP3K7 HSP90AA1 0.961919 
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Fig. 3. Conserved experimentally validated STRING networks and the explored top-ranked motifs for TP53-
  and 

TP53+ gastric cancer subtypes: A) STRING conserved experimentally validated network for the genes present in 

the TP53-  subtype brown module; B) STRING conserved experimentally validated network for the genes present in 

the TP53+subtype green-yellow module; Explored top-ranked motifs in the STRING networks highlighted with 

turquoise color nodes (A and B); The explored motifs from the STRING networks represented separately  for 

TP53- and TP53+ subtypes in panel C and D respectively. 
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Polyubiquitin-C which encoded by UBC 

exhibited an interaction with calgranulin B. Kim 

et al. reported the role of calgranulin B in 

gastrointestinal cancer cells and states that 

calgranulin B has a relationship with the tumor 

extracellular environment via polyubiquitin-C 

(Kim et al., 2017).  

Results of one study suggested that HSP90 may 

play an important role in tumor invasion, 

metastasis, and prognosis, and could be a 

potential prognostic factor of gastric cancer 

(Wang et al., 2013). Comparing the expression 

value of HSP90AB1 between normal and 

cancerous gastric tissue, represented that 

expression of HSP90 beta was increased in 

gastric cancer (Liu et al., 1999). The respected 

expressional behavior is also witnessed in our 

results. Phosphorylation has a large influence on 

the function and regulation of Hsp90 (Zuehlke et 

al., 2015). Hsp90 facilitates protein folding and 

leads proteins for degradation via the ubiquitin 

pathway. These opposite activities are done by 

HSP90 when they bind to co-chaperones (CHIP 

and HOP) at C-termini (Muller et al., 2013). In 

primary cancers, Phosphorylation of the c-

terminal of Hsp90α is increased that leads to the 

elevation of HOP interaction with HSP90α, 

which leads to a high proliferation of cells, and 

faster tumor growth (Zuehlke et al., 2015). 

Analyses of common genes of the esophageal, 

gastric, and colon cancers showed that 

HSP90AA1 is a gastrointestinal cancer-related 

gene which can be considered as a predictive 

biomarker for these cancers (Maghvan et al., 

2017). Another study showed that HSP90AA1 

up-regulated in metastatic GC compared with 

primary GC at transcriptional and translational 

levels, and also up-regulated at the translational 

level in primary GC compared with normal 

mucosa (Chang et al., 2009). Thereby, since this 

gene has a known role in cancer progression its 

expression profile can be an important factor in 

determining the cancer stage. Based on its 

biological function and our findings differential 

expression of the respected gene is responsible 

for GC progression and based on our 

computational methodology its expression 

profile can have immense importance in 

predicting the tumor pathological stage. 

However, to determine the precise expression 

profile relationship with the tumor pathological 

stage more thorough experimental and 

computation experimentations are needed.  

Studies showed that the Ribosomal protein 

family has a strong association with GC. Jiang et 

al (Jiang, Li, Jiang, & Shao, 2017), reported that 

reduction of phosphorylation of RPS6 could alter 

MEK inhibition sensitivity of gastric cancer cells 

(Jiang et al., 2017). Studies report the 

overexpression of RPS6 in eight different colon 

cancers and adenomatous polyps. In other words, 

RPS6 dysregulation may be a carcinogenic factor 

in gastric cancer (Guo et al., 2011) If so, RPS6 

can be a biomarker for GC progression 

(specifically the studied subtype) hence its 

pathological stage. MAP2K1 in motif 4 also is 

one of the MAPK family that was reported as a 

gene which can predict the survival of GC 

patients (Xu et al., 2010). This shows the 

importance of the respected gene in cancer 

progression and based on our computational 

approach and it is a clinical trait it can be used as 

a marker for determination of tumor pathological 

stage in the studied subtype.  

PTPN11 is a Protein Tyrosine Phosphatase that 

is upregulated in the TP53- subtype and 

according to previous reports it was 

overexpressed in tubular and intestinal types of 

gastric cancer tumor cells and may have a key 

role in gastric cancer pathogenesis thorough 

Helicobacter pylori infection (Kim et al., 2010). 

However, its impact on the tumor pathological 

stage should be studied more thoroughly.  

Regarding the TP53+ subtype of GC, VAMP8, 

SEC22C, USO1, RBM22, SRRM2, SF3B1, 

PRPF6, HNRNPC and RPL6 were genes in the 

five motifs with the highest-ranking score. 

Besides analyzing each gene and their 

relationship with GC separately, demonstrating 

each motif's relationship with GC in this research 

is of importance.  

The first motif of TP53+ contains three protein-

coding genes as follows; VAMP8, SEC22C, 

USO1. VAMP8 belongs to the 

synaptobrevin/vesicle-associated membrane 

protein subfamily of soluble N-ethylmaleimide-

sensitive factor attachment protein receptors 

(SNAREs) (Wong et al., 1998). Both SEC22C 

and USO1 have SNARE binding functions, also 

recent studies have reported that SNARE 

proteins have an important role in tumorigenesis 

with several functions. These roles consist of 
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diverse functions including SNARE-mediated 

trafficking in tumor progression, cell migration, 

inflammatory response, autophagy, and cell 

survival in tumorigenesis (Meng and Wang, 

2015). Differentiated expression of SEC22C and 

USO1 indicates that regulation of SNAREs and 

SNARE binding proteins is compromised 

therefore SNARE proteins especially VAMP8 

could be a potential therapeutic target towards 

gastric cancer. Recent studies reported that 

VAMP8 is associated with the development of 

tumors (Meng and Wang, 2015) and since the 

tumors, pathological stage represents cancer 

development and progression clinically this 

shows that VAMP8 can be involved in GC 

development. Also, since the biological 

background stated that this gene has invasive 

carcinogenesis behaviors, it can be used as a 

biomarker for predicting the tumor pathological 

stage. This gene can be a target for future 

expression profiling studies in terms of exploring 

its precise ability to predict the tumor 

pathological stage as a biomarker.  

 All of the second, the third, fourth, and fifth 

motif of GC subtype TP 53+ genes; SF3B1, 

SRRM2, RBM22, PRPF6, HNRNPC (except 

RPL6), are a part of “mRNA splicing –major 

pathway” and “mRNA splicing via spliceosome” 

(GO:0000398), moreover a highly mutable gene 

such as SF3B1 causes alternative splicing (AS) 

and miss splicing in which recent studies showed 

to have a direct relationship with gastric cancer 

advancement (David and Manley, 2010). 

Alternative splicing causes flexibility that cancer 

cells often use to their advantage to produce 

proteins that promote their growth and survival 

(David & Manley, 2010). recent studies proved 

that PRPF6 motivates cancer proliferation by 

preferential splicing of genes that are responsible 

for the regulation of growth and the inhibition of 

such gene (selectively) abrogated the cancer 

growth which indicates the major importance of 

the latter gene in cancer occurrence and 

progression via splicing of distinct growth-

related gene products (Adler et al., 2014). 

These genes are not known to be directly gastric 

cancer related (except HNRNPC), although the 

relationship of alternative splicing and aberrant 

splicing with multiple cancer types and GC is 

inevitable. Also, this shows the importance of 

AS to be potentially involved in the progression 

and development of TP53+ GC. Therefore, based 

on the computational methodology performed in 

this study we can reach two conclusions: 1- the 

importance of AS in GC progression and 2- the 

ability of the latter’s genes expression profiles 

(combined) in determining the tumors 

pathological stage. However, all of these claims 

must be studied more thoroughly in the future 

and this hypothesis is based on the known 

biological behavior of these genes and their role 

as carcinogenesis and our computational 

approach. SRRM2 and SF3B1 are seen 

repeatedly in our motif list which may indicate 

the importance of SRRM2 and SF3B1 in the 

occurrence and development of gastric cancer, 

studies have also detected relevance of the 

mutation of both genes with various cancer 

types. For example SF3B1 mutation (splicing 

factor gene) in chronic lymphocytic leukemia 

(Quesada et al., 2012) and SRRM2 (splicing 

factor gene) germline mutation in papillary 

thyroid carcinoma (Tomsic et al., 2015) 

.however they are not known to be gastric cancer 

(TP53+) related. Heterogeneous Nuclear 

RibonucleoproteinC (HNRNPC) has been 

studied and proved to be gastric cancer-related. 

Overexpression of HNRNPC promotes 

chemoresistance (up-regulation of this gene in 

our samples was also significant with the LFC of 

1.951). Recent studies demonstrated this gene as 

a potential prognostic and therapeutic marker 

for GC (Huang et al., 2016). Based on our 

computational method this gene is highly co-

expressed with SRRM2 and SF3B1, the 

importance and relation of these two genes are 

demonstrated towards advancement and 

chemoresistance of GC (TP53+), respectively. 

This data suggests the usefulness of SRRM2 and 

SF3B1 alongside HNRNPC as a potential 

biological marker for GC (TP53+). 

Regarding the fifth motif of TP53+, recent 

studies revealed that human ribosomal protein 

L6 (RPL6) has a role in protecting gastric cancer 

cells from drug-induced apoptosis and it can be 

used as a novel approach towards GC (TP53+) 

therapy (Wu et al.,2011).  

RPL6 and HNRNPC both cause multidrug 

resistance. Inhibition of these genes both 

abrogated the growth of GC cells. This reveals 

the importance of these drug resistance genes in 

therapy (gene therapy) via RNA interference for 
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GC TP53+. Moreover, the inner relationship of 

TP53+ genes present SRRM2 (splicing factor 

gene) as a hub gene (see Fig. 3) which 

demonstrates that AS (especially SRRM2) is 

utterly important in cancerous functions that are 

mentioned earlier (such as drug resistance). To 

clarify, this could indicate that the flexibility and 

diversity that cancerous cells develop in terms of 

becoming resistant to apoptotic drugs may be 

due to behaviors caused by AS and related genes 

(SRRM2, SF3B1). Based on this hypothesis their 

expression profile can be a great target for GC 

patients in terms of pathological prediction of 

patients. 

Conclusion 

Tumor heterogeneity is one of the major 

challenges in analyzing multi-omics data 

(genomic, transcriptomic, proteomic, and 

metabolomics) from the sample pool. This 

heterogeneity is the basic concept for precision 

medicine. Inter-tumor and intra-tumor 

heterogeneity are one of the major factors in the 

diversity of prostate tumors that arise from 

genetic variations between tumor cells. The 

reasons for these heterogeneities are not well 

understood but they are critical in effective 

diagnosis and treatment of patients which are 

considered in this study. In this study, a two-step 

workflow has been used to explore significant 

gene signatures in two gastric cancer subtypes. 

First, a network-based approach (WGCNA) was 

implemented on the transcriptomics data of two 

subtypes of GC (MSS/ TP53+, MSS/ TP53-) in 

order of exploring important co-expressed 

networks (modules) for each subtype and then 

based on a machine learning approach (decision 

tree) we selected the best predicting module 

based on its ability to predict tumor pathological 

stage for each subtype based on the implemented 

ML algorithm and its prediction accuracy in each 

module. In this step, the hypothesis is that each 

module's test set capability to predict each 

patient's pathological stage determines the 

quality of the learned machine based on the train 

set (accuracy of the machine determines the 

characteristics of the gene set in each module). 

To clarify, the best predicting accuracy states 

that the respected module had better 

characteristics for pathological stage prediction. 

This means that the genes constructing the 

respected module can be responsible for cancer 

progression and are best capable of predicting 

the tumor pathological stage as biomarkers. In 

the next step using the STRING database, we 

configured conserved an experimentally 

validated interaction network for the selected 

modules. Since both modules contained a large 

number of genes and hence interactions (MSS/ 

TP53+: 242 genes, MSS/ TP53-: 1449 genes) a 

motif ranking approach was performed to 

explore the most important gene signatures for 

each subtype. Motif exploration and motif 

studies in this type of large network have led to a 

better understanding of the key and core 

regulatory features. In this study, we introduced 

five significant three-node gene motifs for two 

molecular subtypes of gastric cancer which can 

be considered as potential diagnostic and 

therapeutic markers. The developed 

methodology can also be used in the case of 

other complex biological phenotypes to unravel 

important signatures. Since all of the explored 

results had somehow a biological relationship 

with tumor progression, the robustness of this 

computational method on analyzing high 

throughput data and large expression networks 

with the use of patient clinical data is shown. 

The most important aim of this study was to 

pave the way for analyzing such data for future 

similar studies. 
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