Effects of Thyroxine Hormone on the Reproductive Efficiency and Gene Expression of Thyroid Hormone Receptors in the Eggs of Caspian Trout (Salmo caspius)

Document Type : Research Article

Authors

1 Coldwater Fisheries Research Center (CFRC), Iranian Fisheries Sciences Research Institute (IFSRI), Agricultural Research, Education and Extension Organization, Tonekabon, Iran

2 Iranian Fisheries Sciences Research Institute, Agriculture Research Education and Extension Organization (AREEO), Tehran, Iran

3 Cold-Water Fishes Genetic and Breeding Research Center, Iranian Fisheries Sciences Research Institute, Agriculture Research Education and Extension Organization (AREEO), Yasouj, Iran

4 Inland Waters Aquatics Resources Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization, Gorgan, Iran

5 International Research Institute of Sturgeon fish, Rasht, Iran

10.22080/jgr.2025.30433.1449

Abstract

Caspian trout (Salmo caspius, Kessler 1877) is an anadromous brown trout species of ecological and conservation significance. Thyroxine (T4) plays a crucial role in oocyte maturation, fertilization, and early development in teleosts; however, its specific effects on Caspian trout embryos remain insufficiently understood. This study investigated the influence of exogenous T4 immersion on fertilization, eyeing, and hatching rates (FR, ER, HR), endogenous T4 and T3 levels in eggs, and thyroid hormone receptor (THR) gene expression (Thrα and Thrβ). Fertilized eggs were exposed to four treatments for 60 minutes: D1 (control), D2 (0.25 mg l⁻¹), D3 (0.5 mg l⁻¹), and D4 (0.75 mg l⁻¹). Samples were collected from pre-fertilization through post-hatching to capture developmental changes. FR showed no significant differences among treatments, whereas ER and HR were significantly reduced only in the highest T4 concentration (D4, p< 0.05). Egg T4 levels were elevated in D2 during hatching, while T3 concentrations peaked in control eggs (D1), indicating dose-dependent modulation of yolk thyroid hormone dynamics. Two-way ANOVA revealed significant effects of time, T4 concentration, and their interaction on Thrβ expression (p< 0.001). In contrast, Thrα transcripts were undetectable throughout development, suggesting isoform-specific regulation or temporal suppression of this receptor during early ontogeny. Moderate T4 exposure improved hatching performance and stimulated Thrβ expression, whereas excessive supplementation impaired development, potentially due to metabolic overload, altered hormone conversion, or receptor downregulation. Collectively, these findings demonstrate that embryo-yolk thyroid hormone signaling in Caspian trout is sensitive to exogenous T4 levels and plays a critical role in supporting embryogenesis and morphogenesis. Understanding these hormone-mediated processes has important implications for hatchery practices and conservation strategies aimed at enhancing early life-stage survival in this threatened species.

Keywords

Main Subjects


Abdollahpour, H., Falahatkar, B., Efatpanah, I., Meknatkhah, B., & Van Der Kraak, G. (2019). Hormonal and physiological changes in sterlet sturgeon (Acipenser ruthenus) treated with thyroxine. Aquaculture, 507, 293-300. https://doi.org/10.1016/j.aquaculture.2019.03.063
Alinezhad, S., Abdollahpour, H., Jafari, N., & Falahatkar, B. (2020). Effects of thyroxine immersion on sterlet sturgeon (Acipenser ruthenus) embryos and larvae: Variations in thyroid hormone levels during development. Aquaculture, 519, 734745. https://doi.org/10.1016/j.aquaculture.2019.734745
Bahre Kazemi, M., Soltani, M., Matinfar, A., Abtahi, B., Mohagheghi Samarin, A., & Mojazi Amiri, B. (2010). Biochemical and histological studies of overripened oocyte in the Caspian brown trout (Salmo trutta caspius) to determine biomarkers for egg quality. Iranian Journal of Fisheries Sciences, 9(1), 33-48. https://jifro.ir/
Brown, C. L., Urbinati, E. C., Zhang, W., Brown, S. B., & McComb-Kobza, M. (2014). Maternal thyroid and glucocorticoid hormone interactions in larval fish development and their applications in aquaculture. Reviews in Fisheries Science & Aquaculture, 22(3), 207-220. https://doi.org/10.1080/23308249.2014.918086
Campinho, M. A. (2019). Teleost metamorphosis: The role of thyroid hormone. Frontiers in Endocrinology, 10, 383. https://doi.org/10.3389/fendo.2019.00383
Campinho, M. A., Galay-Burgos, M., Sweeney, G. E., & Power, D. M. (2010). Coordination of deiodinase and thyroid hormone receptor expression during the larval to juvenile transition in sea bream (Sparus aurata). General and Comparative Endocrinology, 165(2), 181-194. https://doi.org/10.1016/j.ygcen.2009.06.011
Castillo, S., Bollfrass, K., Mendoza, R., Fontenot, Q., Lazo, J. P., Aguilera, C., & Ferrara, A. (2015). Stimulatory effect of thyroid hormones on larval development and reproductive performance in alligator gar and spotted gar. Aquaculture Research, 46(9), 2079-2091. https://doi.org/10.1111/are.12363
Deal, C. K., & Volkoff, H. (2020). The role of the thyroid axis in fish. Frontiers in Endocrinology, 11, 596585. https://doi.org/10.3389/fendo.2020.596585
Glasauer, S. M., & Neuhauss, S. C. (2014). Whole-genome duplication in teleost fishes and its evolutionary consequences. Molecular Genetics and Genomics, 289, 1045-1060. https://doi.org/10.1007/s00438-014-0889-2
Habibi, H. R., Nelson, E. R., & Allan, E. R. O. (2012). New insights into thyroid hormone function and modulation of reproduction in goldfish. General and Comparative Endocrinology, 175(1), 19-26. https://doi.org/10.1016/j.ygcen.2011.10.011
Heijlen, M., Houbrechts, A. M., Bagci, E., & Darras, V. M. (2013). Zebrafish as a model to study peripheral thyroid hormone metabolism in vertebrate development. General and Comparative Endocrinology, 188, 123-131. https://doi.org/10.1016/j.ygcen.2013.03.003
Jalali, M. A., & Mojazi Amiri, B. (2009). Threatened fishes of the world: Salmo trutta caspius (Kessler, 1877). Environmental Biology of Fishes, 86(3), 375-376. https://doi.org/10.1007/s10641-009-9528-5
Jamili, S. (2004). Investigating the effect of thyroxine hormone in predisposing sex and accelerating growth and development of larval eggs of selected fishes of the Caspian Sea (Final report). Iranian Fisheries Science Research Institute. http://english.ifsri.ir/
Kalbassi, M. R., Abdollahzadeh, E., & Salari-Joo, H. (2013). A review on aquaculture development in Iran. Ecopersia, 1, 159-178. https://ecopersia.modares.ac.ir/
Kang, D. Y., & Chang, Y. J. (2004). Effects of maternal injection of triiodothyronine (T3) on growth of newborn offspring of rockfish. Aquaculture, 234, 641-655. https://doi.org/10.1016/j.aquaculture.2003.12.019
Kawakami, Y., Nozaki, J., Seoka, M., Kumai, H., & Ohta, H. (2008). Characterization of thyroid hormones and thyroid hormone receptors during early development of Pacific bluefin tuna. General and Comparative Endocrinology, 155, 597-606. https://doi.org/10.1016/j.ygcen.2007.08.006
Kiabi, B. H., Abdoli, A., & Naderi, M. (1999). Status of the fish fauna in the south Caspian basin of Iran. Zoology in the Middle East, 18, 57-65. https://doi.org/10.1080/09397140.1999.10637787
Kiapour, F., Hajimoradlou, A., Ghorbani, R., & Hajibeglou, A. (2024). Effect of thyroxine hormone in early growth stages on growth indices of rainbow trout (Oncorhynchus mykiss). Journal of Utilization and Cultivation of Aquatic Resources, 12(4), 11-22. https://japu.gau.ac.ir/?lang=en
Lazcano, I., & Orozco, A. (2018). Revisiting available knowledge on teleostean thyroid hormone receptors. General and Comparative Endocrinology, 265, 128-132. https://doi.org/10.1016/j.ygcen.2018.03.022
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25(4), 402-408. https://doi.org/10.1006/meth.2001.1262
Liu, Y.-W., Lo, L.-J., & Chan, W.-K. (2000). Temporal expression and T3 induction of thyroid hormone receptors during early development in zebrafish. Molecular and Cellular Endocrinology, 159, 187-195. https://doi.org/10.1016/S0303-7207(99)00193-8
Malakpour Kolbadinezhad, S., Coimbra, J., & Wilson, J. M. (2018). Osmoregulation in the Plotosidae catfish: Role of the salt-secreting dendritic organ. Frontiers in Physiology, 9, 761. https://doi.org/10.3389/fphys.2018.00761
McCormick, M. I. (1998). Behaviorally induced maternal stress in a fish influences progeny quality by a hormonal mechanism. Ecology, 79(6), 1783-1793. https://doi.org/10.1890/0012-9658(1998)079[1783:BIMSAF]2.0.CO;2
McCormick, M. I. (1999). Experimental test of the effect of maternal hormones on larval quality of a coral reef fish. Oecologia, 118, 412-422. https://doi.org/10.1007/s004420050747
Morgado, I., Santos, C. R. A., Jacinto, R., & Power, D. M. (2007). Regulation of transthyretin by thyroid hormones in fish. General and Comparative Endocrinology, 152, 189-197. https://doi.org/10.1016/j.ygcen.2007.01.007
Mylonas, C. C., Sullivan, C. V., & Hinshaw, J. M. (1994). Thyroid hormones in brown trout reproduction and early development. Fish Physiology and Biochemistry, 13, 485-493. https://doi.org/10.1007/BF00004319
Najafpour, B., Dorafshan, S., Paykan-Heyrati, F., & Power, D. M. (2019). Embryonic development of the endangered Caspian brown trout. Journal of Applied Ichthyology. 35 (2), 473-479. https://doi.org/10.1111/jai.14018
Nayak, P. K., Mishra, T., Mishra, J., & Pandey, A. K. (2004). Effect of combined thyroxine and cortisol treatment on hatching and larval growth of Heteropneustes fossilis. Journal of the Indian Fisheries Association, 31, 125-137. https://epubs.icar.org.in/index.php/JIFA/index
Nelson, E. R., & Habibi, H. R. (2009). Thyroid receptor subtypes in fish. General and Comparative Endocrinology, 161, 90-96. https://doi.org/10.1016/j.ygcen.2008.11.007
Niksirat, H., & Abdoli, A. (2009). Status of the critically endangered Caspian brown trout. Zoology in the Middle East, 46(1), 55-60. https://doi.org/10.1080/09397140.2009.10638335
Nowell, M. A., Power, D. M., Guerreiro, P. M., Llewellyn, L., & Sweeney, G. E. (2001). Characterization of a sea bream thyroid hormone receptor-beta clone. General and Comparative Endocrinology, 123, 80-89. https://doi.org/10.1006/gcen.2001.7634
OECD. (2023). Detailed review paper on the thyroid hormone system in fish and identification of potential thyroid-related endpoints (Series on Testing and Assessment No. 367). OECD Publishing. https://doi.org/10.1787/2f1a8b8a-en
Power, D. M., Llewellyn, L., Faustino, M., Nowell, M. A., Björnsson, B. T., Einarsdottir, I. E., Canário, A. V. M., & Sweeney, G. E. (2001). Thyroid hormones in growth and development of fish. Comparative Biochemistry and Physiology, 130, 447-459. https://doi.org/10.1016/S1532-0456(01)00271-6
Quesada-García, A., Valdehita, A., Kropf, C., Casanova-Nakayama, A., Segner, H., & Navas, J. M. (2014). Thyroid signaling in immune organs of rainbow trout. Fish & Shellfish Immunology, 38(1), 166-174. https://doi.org/10.1016/j.fsi.2014.03.008
Raine, J. C., Cameron, C., Vijayan, M. M., Lamarre, J., & Leatherland, J. F. (2004). Effect of elevated oocyte triiodothyronine content on rainbow trout embryos. Journal of Fish Biology, 65(1), 206-226. https://doi.org/10.1111/j.0022-1112.2004.00452.x
Raine, J. C., & Leatherland, J. F. (2003). Trafficking of L-triiodothyronine between ovarian fluid and oocytes of rainbow trout. Comparative Biochemistry and Physiology, 136, 267-274. https://doi.org/10.1016/S1096-4959(03)00203-3
Roche, G., & Leblond, C. P. (1952). Effect of thyroid preparation and iodide on salmonidae. Endocrinology, 51(6), 524-545. https://doi.org/10.1210/endo-51-6-524
Rozen, S., & Skaletsky, H. J. (2000). Primer3 on the WWW for general users. In S. Misener & S. A. Krawetz (Eds.), Bioinformatics methods and protocols (pp. 365-386). Humana Press. https://doi.org/10.1385/1-59259-192-2:365
Vergauwen, L., Cavallin, J. E., Ankley, G. T., Bars, C., Gabriëls, I. J., Michiels, E. D., ... & Knapen, D. (2018). Gene transcription ontogeny of the hypothalamic-pituitary-thyroid axis in early-life stage fish. General and Comparative Endocrinology, 266, 87-100. https://doi.org/10.1016/j.ygcen.2018.04.006
Zimmer, A. M., Wright, P. A., & Wood, C. M. (2017). Ammonia and urea handling by early life stages of fishes. Journal of Experimental Biology, 220, 3843-3855. https://doi.org/10.1242/jeb.154518