Agu, P. C., Afiukwa, C. A., Orji, O. U., Ezeh, E. M., Ofoke, I. H., Ogbu, C. O., Ugwuja, E. I., & Aja, P. M. (2023). Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management.
Scientific Reports, 13(1), 13398.
https://doi.org/10.1038/s41598-023-40160-2
Bhattacharya, S., Asati, V., Mishra, M., Das, R., Kashaw, V., & Kashaw, S. K. (2021). Integrated computational approach on sodium-glucose co-transporter 2 (SGLT2) inhibitors for the development of novel antidiabetic agents.
Journal of Molecular Structure, 1227, 129511.
https://doi.org/10.1016/j.molstruc.2020.129511
Cefalo, C. M. A., Cinti, F., Moffa, S., Impronta, F., Sorice, G. P., Mezza, T., ... & Giaccari, A. (2019). Sotagliflozin, the first dual SGLT inhibitor: current outlook and perspectives.
Cardiovascular Diabetology, 18(1), 20.
https://doi.org/10.1186/s12933-019-0828-y
Chang, C.Y., Ho, Y., Lin, S.J., & Liu, H.L. (2019). Discovery of novel N-glycoside and non-glycoside hSGLT2 inhibitors for the treatment of type 2 diabetes mellitus.
Journal of Diabetes Mellitus, 09(03), 77-104.
https://doi.org/10.4236/jdm.2019.93009
Dai, Z.C., Chen, J.X., Zou, R., Liang, X.B., Tang, J.X., & Yao, C.W. (2023). Role and mechanisms of SGLT-2 inhibitors in the treatment of diabetic kidney disease.
Frontiers in Immunology, 14.
https://doi.org/10.3389/fimmu.2023.1213473
Fitchett, D., Inzucchi, S. E., Cannon, C. P., McGuire, D. K., Scirica, B. M., Johansen, O. E., ... & Zinman, B. (2019). Empagliflozin reduced mortality and hospitalization for heart failure across the spectrum of cardiovascular risk in the EMPA-REG OUTCOME trial.
Circulation, 139(11), 1384-1395.
https://doi.org/10.1161/CIRCULATIONAHA.118.037778
Friedman, R. (2022). Computational studies of protein-drug binding affinity changes upon mutations in the drug target.
Computational Molecular Science, 12(1), e1563.
https://doi.org/10.1002/wcms.1563
Galicia-Garcia, U., Benito-Vicente, A., Jebari, S., Larrea-Sebal, A., Siddiqi, H., Uribe, K. B., ... & Martín, C. (2020). Pathophysiology of type 2 diabetes mellitus.
International Journal of Molecular Sciences, 21(17), 6275.
https://doi.org/10.3390/ijms21176275
Ganwir, P., Bhadane, R., & Chaturbhuj, G. U. (2024).
In-silico screening and identification of glycomimetic as potential human sodium-glucose co-transporter 2 inhibitor.
Computational Biology and Chemistry, 110, 108074.
https://doi.org/10.1016/j.compbiolchem.2024.108074
García-Heredia, J. M., Otero-Albiol, D., Pérez, M., Pérez-Castejón, E., Muñoz-Galván, S., & Carnero, A. (2020). Breast tumor cells promotes the horizontal propagation of EMT, stemness, and metastasis by transferring the MAP17 protein between subsets of neoplastic cells.
Oncogenesis, 9(10), 96.
https://doi.org/10.1038/s41389-020-00280-0
Hiraizumi, M., Akashi, T., Murasaki, K., Kishida, H., Kumanomidou, T., Torimoto, N., Nureki, O., & Miyaguchi, I. (2024). Transport and inhibition mechanism of the human SGLT2-MAP17 glucose transporter.
Nature Structural and Molecular Biology, 31(1), 159-169.
https://doi.org/10.1038/s41594-023-01134-0
Hotait, Z. S., Lo Cascio, J. N., Choos, E. N. D., & Shepard, B. D. (2022). The role of the renal proximal tubule in glucose homeostasis.
American Journal of Physiology, 323(3), 791-803.
https://doi.org/10.1152/ajpcell.00225.2022
Hsia, D. S., Grove, O., & Cefalu, W. T. (2017). An update on sodium-glucose co-transporter-2 inhibitors for the treatment of diabetes mellitus.
Diabetes and Obesity, 24(1), 73-79.
https://doi.org/10.1097/MED.0000000000000311
Kaur, P., Behera, B. S., Singh, S., & Munshi, A. (2021). The pharmacological profile of SGLT2 inhibitors: Focus on mechanistic aspects and pharmacogenomics.
European Journal of Pharmacology, 904, 174169.
https://doi.org/10.1016/j.ejphar.2021.174169
Lahti, J. L., Tang, G. W., Capriotti, E., Liu, T., & Altman, R. B. (2012). Bioinformatics and variability in drug response: a protein structural perspective.
Journal of the Royal Society Interface, 9(72), 1409-1437.
https://doi.org/10.1098/rsif.2011.0843
Maccari, R., & Ottanà, R. (2022). Sodium-glucose cotransporter inhibitors as antidiabetic drugs: Current development and future perspectives.
Journal of Medicinal Chemistry, 65(16), 10848-10881.
https://doi.org/10.1021/acs.jmedchem.2c00867
Mahaffey, K. W., Neal, B., Perkovic, V., de Zeeuw, D., Fulcher, G., Erondu, N., ... & Matthews, D. R. (2018). Canagliflozin for primary and secondary prevention of cardiovascular events: results from the CANVAS program (Canagliflozin Cardiovascular Assessment Study). Circulation, 137(4), 323-334.
https://doi.org/10.1161/CIRCULATIONAHA.117.032038
Mashraqi, M. M., Chaturvedi, N., Alam, Q., Alshamrani, S., Bahnass, M. M., Ahmad, K., ... & Rizvi, S. M. D. (2021). Biocomputational prediction approach targeting FimH by natural SGLT2 inhibitors: A possible way to overcome the uropathogenic effect of SGLT2 inhibitor drugs.
Molecules, 26(3), 582.
https://doi.org/10.3390/molecules26030582
Niu, Y., Liu, R., Guan, C., Zhang, Y., Chen, Z., Hoerer, S., ... & Chen, L. (2022). Structural basis of inhibition of the human SGLT2-MAP17 glucose transporter.
Nature, 601(7892), 280-284.
https://doi.org/10.1038/s41586-021-04212-9
Nuffer, W., Williams, B., & Trujillo, J. M. (2019). A review of sotagliflozin for use in type 1 diabetes.
Therapeutic Advances in Endocrinology and Metabolism, 10, 2042018819890527
https://doi.org/10.1177/2042018819890527
Prasetiyo, A., Mumpuni, E., Luthfiana, D., Herowati, R., & Putra, G. S. (2025).
In silico discovery of potential sodium-glucose cotransporter-2 (SGLT-2) inhibitors from
Smallanthus sonchifolius (Poepp.) H.Rob. via molecular docking and molecular dynamics simulation approach.
Journal of Pharmacy and Pharmacognosy Research, 13(3), 716-728.
https://doi.org/10.56499/jppres24.2104_13.3.716
Wan, S., Kumar, D., Ilyin, V., Al Homsi, U., Sher, G., Knuth, A., & Coveney, P. V. (2021). The effect of protein mutations on drug binding suggests ensuing personalised drug selection.
Scientific Reports, 11(1), 13452.
https://doi.org/10.1038/s41598-021-92785-w
Xu, B., Li, S., Kang, B., & Zhou, J. (2022). The current role of sodium-glucose cotransporter 2 inhibitors in type 2 diabetes mellitus management.
Cardiovascular Diabetology, 21(1), 83.
https://doi.org/10.1186/s12933-022-01512-w