Akhter, Y., & Khan, J. A. (2018). Genome wide identification of cotton (
Gossypium hirsutum)-encoded microRNA targets against Cotton leaf curl Burewala virus.
Gene, 638, 60-65.
https://doi.org/10.1016/j.gene.2017.09.061
Alazem, M., & Lin, N. S. (2015). Roles of plant hormones in the regulation of host-virus interactions.
Molecular Plant Pathology, 16(5), 529-540.
https://doi.org/10.1111/mpp.12204
Ali, I., Amin, I., Briddon, R. W., & Mansoor, S. (2013). Artificial microRNA-mediated resistance against the monopartite begomovirus Cotton leaf curl Burewala virus.
Virology Journal, 10(1), 231.
https://doi.org/10.1186/1743-422X-10-231
Amirnia, F., Eini, O., & Koolivand, D. (2016).
In silico analysis of microRNA binding to the genome of Beet curly top Iran virus in tomato.
Archives of Phytopathology and Plant Protection, 49(17-18), 434-444.
https://doi.org/10.1080/03235408.2016.1228737
Ashraf, M. A., Feng, X., Hu, X., Ashraf, F., Shen, L., Iqbal, M. S., & Zhang, S. (2022). In silico identification of sugarcane (Saccharum officinarum L.) genome encoded microRNAs targeting sugarcane bacilliform virus. PloS One, 17(1), e0261807. https://doi.org/10.1371/journal.pone.0261807 J
Avila-Bonilla, R. G., & Salas-Benito, J. S. (2024). Computational screening to predict microRNA targets in the Flavivirus 3′ UTR genome: an approach for antiviral development. International Journal of Molecular Sciences, 25(18), 10135. https://doi.org/10.3390/ijms251810135
Bergman, S., Diament, A., & Tuller, T. (2020). New computational model for miRNA-mediated repression reveals novel regulatory roles of miRNA bindings inside the coding region.
Bioinformatics, 36(22-23), 5398-5404.
https://doi.org/10.1093/bioinformatics/btaa1021
Bernhart, S. H., Tafer, H., Mückstein, U., Flamm, C., Stadler, P. F., & Hofacker, I. L. (2006). Partition function and base pairing probabilities of RNA heterodimers.
Algorithms for Molecular Biology, 1(1), 3.
https://doi.org/10.1186/1748-7188-1-3
Bonnet, E., He, Y., Billiau, K., & Van de Peer, Y. (2010). TAPIR, a web server for the prediction of plant microRNA targets, including target mimics.
Bioinformatics, 26(12), 1566-1568.
https://doi.org/10.1093/bioinformatics/btq233
Bouvet, M., Voigt, S., Tagawa, T., Albanese, M., Chen, Y. F. A., Chen, Y., ... & Hammerschmidt, W. (2021). Multiple viral microRNAs regulate interferon release and signaling early during infection with Epstein-Barr virus.
MBio, 12(2), 10-1128.
https://doi.org/10.1128/mbio.03440-20
Dai, X., & Zhao, P. X. (2011). psRNATarget: a plant small RNA target analysis server. Nucleic Acids Research, 39(suppl_2), W155-W159.
Dandare, A., Rabia, G., & Khan, M. J. (2021).
In silico analysis of non-coding RNAs and putative target genes implicated in metabolic syndrome.
Computers in Biology and Medicine, 130, 104229.
https://doi.org/10.1016/j.compbiomed.2021.104229
Du, P., Wu, J., Zhang, J., Zhao, S., Zheng, H., Gao, G., ... & Li, Y. (2011). Viral infection induces expression of novel phased microRNAs from conserved cellular microRNA precursors.
PLoS Pathogens, 7(8), e1002176.
https://doi.org/10.1371/journal.ppat.1002176
Gao, B., Cui, X. W., Li, X. D., Zhang, C. Q., & Miao, H. Q. (2011). Complete genomic sequence analysis of a highly virulent isolate revealed a novel strain of Sugarcane mosaic virus.
Virus Genes, 43, 390-397.
https://doi.org/10.1007/s11262-011-0644-2
Hajieghrari, B., Farrokhi, N., Goliaei, B., & Kavousi, K. (2019). The role of MicroRNAs in defense against viral phytopathogens.
Physiological and Molecular Plant Pathology, 107, 8-13.
https://doi.org/10.1016/j.pmpp.2019.04.008
Huang, J., Yang, M., & Zhang, X. (2016). The function of small RNAs in plant biotic stress response.
Journal of Integrative Plant Biology, 58(4), 312-327.
https://doi.org/10.1111/jipb.12463
Huang, S., Jia, A., Song, W., Hessler, G., Meng, Y., Sun, Y., ... & Chai, J. (2022). Identification and receptor mechanism of TIR-catalyzed small molecules in plant immunity. Science, 377(6605), eabq3297. https://doi.org/10.1126/science.abq3297
Ivanov, K. I., Eskelin, K., Bašić, M., De, S., Lohmus, A., Varjosalo, M., & Mäkinen, K. (2016). Molecular insights into the function of the viral RNA silencing suppressor HCPro.
The Plant Journal, 85(1), 30-45.
https://doi.org/10.1111/tpj.13088
Izadpanah, K., & Kamran, R. (1995). Isolation of a strain of sugarcane mosaic virus (SCMV) from maize in Sepidan region of Fars. In Proceedings of the 12th Iranian Plant Protection Congress 2-7 September 1995 Karadj (Iran Islamic Republic) (Vol. 94).
Kasschau, K. D., Xie, Z., Allen, E., Llave, C., Chapman, E. J., Krizan, K. A., & Carrington, J. C. (2003). P1/HC-Pro, a viral suppressor of RNA silencing, interferes with
Arabidopsis development and miRNA function.
Developmental Cell, 4(2), 205-217.
https://doi.org/10.1016/S1534-5807(03)00025-X
King, A. M., Lefkowitz, E., Adams, M. J., & Carstens, E. B. (Eds.). (2011). Virus taxonomy: ninth report of the International Committee on Taxonomy of Viruses (Vol. 9). Elsevier.
Kumar, S., Korra, T., Thakur, R., Arutselvan, R., Kashyap, A. S., Nehela, Y., ... & Keswani, C. (2023). Role of plant secondary metabolites in defence and transcriptional regulation in response to biotic stress.
Plant Stress, 8, 100154.
https://doi.org/10.1016/j.stress.2023.100154
Kuo, Y. W., & Falk, B. W. (2022). Artificial microRNA guide strand selection from duplexes with no mismatches shows a purine‐rich preference for virus‐and non‐virus‐based expression vectors in plants.
Plant Biotechnology Journal, 20(6), 1069-1084.
https://doi.org/10.1111/pbi.13786
Li, L., Xu, J., Yang, D., Tan, X., & Wang, H. (2010). Computational approaches for microRNA studies: a review.
Mammalian Genome, 21, 1-12.
https://doi.org/10.1007/s00335-009-9241-2
Lin, J., Zhao, J., Du, L., Wang, P., Sun, B., Zhang, C., ... & Sun, H. (2024). Activation of MAPK-mediated immunity by phosphatidic acid in response to positive-strand RNA viruses.
Plant Communications, 5(1).
https://doi.org/10.1016/j.xplc.2023.100659
Liu, S. R., Zhou, J. J., Hu, C. G., Wei, C. L., & Zhang, J. Z. (2017). MicroRNA-mediated gene silencing in plant defense and viral counter-defense.
Frontiers in Microbiology, 8, 1801.
https://doi.org/10.3389/fmicb.2017.01801
Lorenz, R., Bernhart, S. H., Höner zu Siederdissen, C., Tafer, H., Flamm, C., Stadler, P. F., & Hofacker, I. L. (2011). ViennaRNA Package 2.0.
Algorithms for Molecular Biology, 6(1), 26.
https://doi.org/10.1186/1748-7188-6-26
Luo, C., Bashir, N. H., Li, Z., Liu, C., Shi, Y., & Chu, H. (2024). Plant microRNAs regulate the defense response against pathogens.
Frontiers in Microbiology, 15, 1434798.
https://doi.org/10.3389/fmicb.2024.1434798
Mathews, D. H., Disney, M. D., Childs, J. L., Schroeder, S. J., Zuker, M., & Turner, D. H. (2004). Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure.
Proceedings of the National Academy of Sciences, 101(19), 7287-7292.
https://doi.org/10.1073/pnas.0401799101
Miranda, K. C., Huynh, T., Tay, Y., Ang, Y. S., Tam, W. L., Thomson, A. M., ... & Rigoutsos, I. (2006). A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes.
Cell, 126(6), 1203-1217.
https://doi.org/10.1016/j.cell.2006.07.031
Mitter, N., Zhai, Y., Bai, A. X., Chua, K., Eid, S., Constantin, M., ... & Pappu, H. R. (2016). Evaluation and identification of candidate genes for artificial microRNA-mediated resistance to tomato spotted wilt virus.
Virus Research, 211, 151-158.
https://doi.org/10.1016/j.virusres.2015.10.003
Mohammadi, M. R., Koohi-Habibi, M., Mosahebi, G., & Hajieghrari, B. (2006). Identification of prevalent potyvirus on maize and johnsongrass in corn fields of Tehran province of Iran and a study on some of its properties. Communications in Agricultural and Applied Biological Sciences, 71(3 Pt B), 1311-1319.
Moradi, Z., Mehrvar, M., Nazifi, E., & Zakiaghl, M. (2016). The complete genome sequences of two naturally occurring recombinant isolates of Sugarcane mosaic virus from Iran.
Virus Genes, 52(2), 270-280.
https://doi.org/10.1007/s11262-016-1302-5
Perera, M. F., Filippone, M. P., Ramallo, C. J., Cuenya, M. I., García, M. L., Ploper, L. D., & Castagnaro, A. P. (2009). Genetic diversity among viruses associated with sugarcane mosaic disease in Tucumán, Argentina.
Phytopathology, 99(1), 38-49.
https://doi.org/10.1094/PHYTO-99-1-0038
Pérez-Quintero, Á. L., Neme, R., Zapata, A., & López, C. (2010). Plant microRNAs and their role in defense against viruses: a bioinformatics approach.
BMC Plant Biology, 10(1), 138.
https://doi.org/10.1186/1471-2229-10-138
Petchthai, U., Yee, C. S. L., & Wong, S. M. (2018). Resistance to CymMV and ORSV in artificial microRNA transgenic Nicotiana benthamiana plants.
Scientific Reports, 8(1), 9958.
https://doi.org/10.1038/s41598-018-28388-9
Peterson, S. M., Thompson, J. A., Ufkin, M. L., Sathyanarayana, P., Liaw, L., & Congdon, C. B. (2014). Common features of microRNA target prediction tools.
Frontiers in Genetics, 5, 23.
https://doi.org/10.3389/fgene.2014.00023
Pinzón, N., Li, B., Martinez, L., Sergeeva, A., Presumey, J., Apparailly, F., & Seitz, H. (2017). microRNA target prediction programs predict many false positives.
Genome Research, 27(2), 234-245.
doi/10.1101/gr.205146.116
Qiu, L., Luo, H., Zhou, H., Yan, H., Fan, Y., Zhou, Z., ... & Wu, J. (2022). MicroSugar: A database of comprehensive miRNA target prediction framework for sugarcane (
Saccharum officinarum L.).
Genomics, 114(4), 110420.
https://doi.org/10.1016/j.ygeno.2022.110420
Reichling, J. (2010). Plant‐microbe interactions and secondary metabolites with antibacterial, antifungal and antiviral properties.
Annual Plant Reviews: Functions and Biotechnology of Plant Secondary Metabolites, 39, 214-347.
https://doi.org/10.1002/9781444318876.ch4
Rehmsmeier, M., Steffen, P., Höchsmann, M., & Giegerich, R. (2004). Fast and effective prediction of microRNA/target duplexes.
RNA, 10(10), 1507-1517.
https://doi.org/10.1261/rna.5248604
Ricaud, C., Egan, B. T., Gillaspie, A. G., & Hughes, C. G. (Eds.). (2012). Diseases of sugarcane (1st ed.). Elsevier Science, Amsterdam, Netherlands.
Riolo, G., Cantara, S., Marzocchi, C., & Ricci, C. (2020). miRNA targets: from prediction tools to experimental validation.
Methods and Protocols, 4(1), 1.
https://doi.org/10.3390/mps4010001
Shahriari, A. G., Tahmasebi, A., Ghodoum Parizipour, M. H., Soltani, Z., Tahmasebi, A., & Shahid, M. S. (2025). The crucial role of mitochondrial/chloroplast-related genes in viral genome replication and host defense: integrative systems biology analysis in plant-virus interaction.
Frontiers in Microbiology, 16, 1551123.
https://doi.org/10.3389/fmicb.2025.1551123
Vijai Singh, V. S., Sinha, O. K., & Rajesh Kumar, R. K. (2003). Progressive decline in yield and quality of sugarcane due to sugarcane mosaic virus. Indian Phytopathology, 56(4), 500-502.
Viswanathan, R., & Balamuralikrishnan, M. J. S. T. (2005). Impact of mosaic infection on growth and yield of sugarcane.
Sugar Tech, 7, 61-65.
https://doi.org/10.1007/BF02942419
Wang, H., Jiao, X., Kong, X., Hamera, S., Wu, Y., Chen, X., ... & Yan, Y. (2016). A signaling cascade from miR444 to RDR1 in rice antiviral RNA silencing pathway.
Plant Physiology, 170(4), 2365-2377.
https://doi.org/10.1104/pp.15.01283
Wang, J., Xu, G., Ning, Y., Wang, X., & Wang, G. L. (2022). Mitochondrial functions in plant immunity.
Trends in Plant Science, 27(10), 1063-1076.
https://doi.org/10.1016/j.tplants.2022.04.007
Wenzhi, W., Ashraf, M. A., Ghaffar, H., Ijaz, Z., Zaman, W. U., Mazhar, H., ... & Zhang, S. (2024).
In silico identification of sugarcane genome-encoded microRNAs targeting sugarcane mosaic virus.
Microbiology Research, 15(1), 273-289.
https://doi.org/10.3390/microbiolres15010019
Xia, Z., Zhao, Z., Li, M., Chen, L., Jiao, Z., Wu, Y., ... & Fan, Z. (2018). Identification of miRNAs and their targets in maize in response to Sugarcane mosaic virus infection.
Plant Physiology and Biochemistry, 125, 143-152.
https://doi.org/10.1016/j.plaphy.2018.01.031
Zhang, Q., Song, X., Ma, P., Lv, L., Zhang, Y., Deng, J., & Zhang, Y. (2021). Human cytomegalovirus miR-US33as-5p targets IFNAR1 to achieve immune evasion during both lytic and latent infection.
Frontiers in Immunology, 12, 628364.
https://doi.org/10.3389/fimmu.2021.628364
Zhang, X., Du, P., Lu, L., Xiao, Q., Wang, W., Cao, X., ... & Li, Y. (2008). Contrasting effects of HC-Pro and 2b viral suppressors from Sugarcane mosaic virus and Tomato aspermy cucumovirus on the accumulation of siRNAs.
Virology, 374(2), 351-360.
https://doi.org/10.1016/j.virol.2007.12.045
Zheng, Z., Wang, N., Jalajakumari, M., Blackman, L., Shen, E., Verma, S., ... & Millar, A. A. (2020). miR159 represses a constitutive pathogen defense response in tobacco.
Plant Physiology, 182(4), 2182-2198.
https://doi.org/10.1104/pp.19.00786
Zhou, Y., Xu, Z., Duan, C., Chen, Y., Meng, Q., Wu, J., ... & Li, X. (2016). Dual transcriptome analysis reveals insights into the response to Rice black-streaked dwarf virus in maize.
Journal of Experimental Botany, 67(15), 4593-4609.
https://doi.org/10.1093/jxb/erw244
Zhu, T., Zhou, X., Zhang, J. L., Zhang, W. H., Zhang, L. P., You, C. X., ... & Guo, S. L. (2022). Ethylene‐induced NbMYB4L is involved in resistance against tobacco mosaic virus in
Nicotiana benthamiana.
Molecular Plant Pathology, 23(1), 16-31.
https://doi.org/10.1111/mpp.13139