In silico Analysis of miRNAs Targeting Sugarcane Mosaic Virus and Identification of Their Target Genes and Host Responses in Sugarcane (Saccharum officinarum)

Document Type : Research Article

Authors

1 Department of Agriculture, Minab Higher Education Center, University of Hormozgan, Bandar Abbas, Iran

2 Department of Plant Protection, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran

Abstract

Sugarcane mosaic virus (SCMV) is recognized as one of the most destructive pathogens in sugarcane. In response to pathogen attacks on a host plant, the expression of miRNAs is modified, leading to changes in the expression of downstream target genes. This study aimed to bioinformatically evaluate the potential interactions between sugarcane-encoded miRNA sequences and the genome of the virus isolate, and to identify their target genes and pathways in response to SCMV. The in-silico analysis identified sof-miR159e as the common effective candidate, capable of targeting the HC-Pro in the SCMV genome and affecting 165 target genes in sugarcane. Singular enrichment analysis of the target genes with enrichment determined using FDR with a P-value cutoff of 0.05 revealed 25 significant gene ontology (GO) terms in sugarcane. According to GO analysis, the pathways of biological process were related to growth and development, response to stimulus, organelle organization, reproductive-related processes, and cellular and metabolic processes. In addition, mitochondria, intracellular membrane-bounded organelles, and cytoplasmic and intracellular parts were identified as key cellular components. Furthermore, the molecular functions were primarily associated with catalytic and oxidoreductase activities. The top six enriched Kyoto encyclopedia of genes and genomes (KEGG) pathways included transcriptional regulation, plant hormone signal transduction, mitogen-activated protein kinase signaling pathway, plant-pathogen interaction, ethylene signaling, and biosynthesis of secondary metabolites, with the latter having the highest rich factor. These findings identified the key miRNA involved in the binding to the viral genome, the host target genes, and the associated pathways affected by sof-miR159e, which may provide valuable insights into the relationship between miRNAs and SCMV infection dynamics.

Keywords

Main Subjects


Akhter, Y., & Khan, J. A. (2018). Genome wide identification of cotton (Gossypium hirsutum)-encoded microRNA targets against Cotton leaf curl Burewala virus. Gene, 638, 60-65. https://doi.org/10.1016/j.gene.2017.09.061
Alazem, M., & Lin, N. S. (2015). Roles of plant hormones in the regulation of host-virus interactions. Molecular Plant Pathology, 16(5), 529-540. https://doi.org/10.1111/mpp.12204
Ali, I., Amin, I., Briddon, R. W., & Mansoor, S. (2013). Artificial microRNA-mediated resistance against the monopartite begomovirus Cotton leaf curl Burewala virus. Virology Journal, 10(1), 231. https://doi.org/10.1186/1743-422X-10-231
Amirnia, F., Eini, O., & Koolivand, D. (2016). In silico analysis of microRNA binding to the genome of Beet curly top Iran virus in tomato. Archives of Phytopathology and Plant Protection, 49(17-18), 434-444. https://doi.org/10.1080/03235408.2016.1228737
Ashraf, M. A., Feng, X., Hu, X., Ashraf, F., Shen, L., Iqbal, M. S., & Zhang, S. (2022). In silico identification of sugarcane (Saccharum officinarum L.) genome encoded microRNAs targeting sugarcane bacilliform virus. PloS One, 17(1), e0261807. https://doi.org/10.1371/journal.pone.0261807 J
Avila-Bonilla, R. G., & Salas-Benito, J. S. (2024). Computational screening to predict microRNA targets in the Flavivirus 3′ UTR genome: an approach for antiviral development. International Journal of Molecular Sciences, 25(18), 10135. https://doi.org/10.3390/ijms251810135
Axtell, M. J. (2013). Classification and comparison of small RNAs from plants. Annual Review of Plant Biology, 64(1), 137-159. https://doi.org/10.1146/annurev-arplant-050312-120043
Bergman, S., Diament, A., & Tuller, T. (2020). New computational model for miRNA-mediated repression reveals novel regulatory roles of miRNA bindings inside the coding region. Bioinformatics, 36(22-23), 5398-5404. https://doi.org/10.1093/bioinformatics/btaa1021
Bernhart, S. H., Tafer, H., Mückstein, U., Flamm, C., Stadler, P. F., & Hofacker, I. L. (2006). Partition function and base pairing probabilities of RNA heterodimers. Algorithms for Molecular Biology, 1(1), 3. https://doi.org/10.1186/1748-7188-1-3
Bonnet, E., He, Y., Billiau, K., & Van de Peer, Y. (2010). TAPIR, a web server for the prediction of plant microRNA targets, including target mimics. Bioinformatics, 26(12), 1566-1568. https://doi.org/10.1093/bioinformatics/btq233
Bouvet, M., Voigt, S., Tagawa, T., Albanese, M., Chen, Y. F. A., Chen, Y., ... & Hammerschmidt, W. (2021). Multiple viral microRNAs regulate interferon release and signaling early during infection with Epstein-Barr virus. MBio, 12(2), 10-1128. https://doi.org/10.1128/mbio.03440-20
Chipman, L. B., & Pasquinelli, A. E. (2019). miRNA targeting: growing beyond the seed. Trends in Genetics, 35(3), 215-222. https://doi.org/10.1016/j.tig.2018.12.005
Dai, X., & Zhao, P. X. (2011). psRNATarget: a plant small RNA target analysis server. Nucleic Acids Research, 39(suppl_2), W155-W159.
Dandare, A., Rabia, G., & Khan, M. J. (2021). In silico analysis of non-coding RNAs and putative target genes implicated in metabolic syndrome. Computers in Biology and Medicine, 130, 104229. https://doi.org/10.1016/j.compbiomed.2021.104229
Das, P., & Sen, P. (2024). Relevance of oxidoreductases in cellular metabolism and defence. In Reactive Oxygen Species-Advances and Developments. IntechOpen. https://doi.org/10.5772/intechopen.112302
Du, P., Wu, J., Zhang, J., Zhao, S., Zheng, H., Gao, G., ... & Li, Y. (2011). Viral infection induces expression of novel phased microRNAs from conserved cellular microRNA precursors. PLoS Pathogens, 7(8), e1002176. https://doi.org/10.1371/journal.ppat.1002176
Gao, B., Cui, X. W., Li, X. D., Zhang, C. Q., & Miao, H. Q. (2011). Complete genomic sequence analysis of a highly virulent isolate revealed a novel strain of Sugarcane mosaic virus. Virus Genes, 43, 390-397. https://doi.org/10.1007/s11262-011-0644-2
Hajieghrari, B., Farrokhi, N., Goliaei, B., & Kavousi, K. (2019). The role of MicroRNAs in defense against viral phytopathogens. Physiological and Molecular Plant Pathology, 107, 8-13. https://doi.org/10.1016/j.pmpp.2019.04.008
Huang, J., Yang, M., & Zhang, X. (2016). The function of small RNAs in plant biotic stress response. Journal of Integrative Plant Biology, 58(4), 312-327. https://doi.org/10.1111/jipb.12463
Huang, S., Jia, A., Song, W., Hessler, G., Meng, Y., Sun, Y., ... & Chai, J. (2022). Identification and receptor mechanism of TIR-catalyzed small molecules in plant immunity. Science, 377(6605), eabq3297. https://doi.org/10.1126/science.abq3297
Ivanov, K. I., Eskelin, K., Bašić, M., De, S., Lohmus, A., Varjosalo, M., & Mäkinen, K. (2016). Molecular insights into the function of the viral RNA silencing suppressor HCPro. The Plant Journal, 85(1), 30-45. https://doi.org/10.1111/tpj.13088
Izadpanah, K., & Kamran, R. (1995). Isolation of a strain of sugarcane mosaic virus (SCMV) from maize in Sepidan region of Fars. In Proceedings of the 12th Iranian Plant Protection Congress 2-7 September 1995 Karadj (Iran Islamic Republic) (Vol. 94).
Kasschau, K. D., Xie, Z., Allen, E., Llave, C., Chapman, E. J., Krizan, K. A., & Carrington, J. C. (2003). P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Developmental Cell, 4(2), 205-217. https://doi.org/10.1016/S1534-5807(03)00025-X
King, A. M., Lefkowitz, E., Adams, M. J., & Carstens, E. B. (Eds.). (2011). Virus taxonomy: ninth report of the International Committee on Taxonomy of Viruses (Vol. 9). Elsevier.
Kumar, S., Korra, T., Thakur, R., Arutselvan, R., Kashyap, A. S., Nehela, Y., ... & Keswani, C. (2023). Role of plant secondary metabolites in defence and transcriptional regulation in response to biotic stress. Plant Stress, 8, 100154. https://doi.org/10.1016/j.stress.2023.100154
Kuo, Y. W., & Falk, B. W. (2022). Artificial microRNA guide strand selection from duplexes with no mismatches shows a purine‐rich preference for virus‐and non‐virus‐based expression vectors in plants. Plant Biotechnology Journal, 20(6), 1069-1084. https://doi.org/10.1111/pbi.13786
Li, L., Xu, J., Yang, D., Tan, X., & Wang, H. (2010). Computational approaches for microRNA studies: a review. Mammalian Genome, 21, 1-12. https://doi.org/10.1007/s00335-009-9241-2
Lin, J., Zhao, J., Du, L., Wang, P., Sun, B., Zhang, C., ... & Sun, H. (2024). Activation of MAPK-mediated immunity by phosphatidic acid in response to positive-strand RNA viruses. Plant Communications, 5(1). https://doi.org/10.1016/j.xplc.2023.100659
Liu, S. R., Zhou, J. J., Hu, C. G., Wei, C. L., & Zhang, J. Z. (2017). MicroRNA-mediated gene silencing in plant defense and viral counter-defense. Frontiers in Microbiology, 8, 1801. https://doi.org/10.3389/fmicb.2017.01801
Lorenz, R., Bernhart, S. H., Höner zu Siederdissen, C., Tafer, H., Flamm, C., Stadler, P. F., & Hofacker, I. L. (2011). ViennaRNA Package 2.0. Algorithms for Molecular Biology, 6(1), 26. https://doi.org/10.1186/1748-7188-6-26
Lozano‐Durán, R. (2023). More than annealing: RNAi is not alone in the fight against plant viruses. The EMBO Journal, 42(18), e115113. https://doi.org/10.15252/embj.2023115113
Luo, C., Bashir, N. H., Li, Z., Liu, C., Shi, Y., & Chu, H. (2024). Plant microRNAs regulate the defense response against pathogens. Frontiers in Microbiology, 15, 1434798. https://doi.org/10.3389/fmicb.2024.1434798
Mathews, D. H., Disney, M. D., Childs, J. L., Schroeder, S. J., Zuker, M., & Turner, D. H. (2004). Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proceedings of the National Academy of Sciences, 101(19), 7287-7292. https://doi.org/10.1073/pnas.0401799101
Miranda, K. C., Huynh, T., Tay, Y., Ang, Y. S., Tam, W. L., Thomson, A. M., ... & Rigoutsos, I. (2006). A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell, 126(6), 1203-1217. https://doi.org/10.1016/j.cell.2006.07.031
Mitter, N., Zhai, Y., Bai, A. X., Chua, K., Eid, S., Constantin, M., ... & Pappu, H. R. (2016). Evaluation and identification of candidate genes for artificial microRNA-mediated resistance to tomato spotted wilt virus. Virus Research, 211, 151-158. https://doi.org/10.1016/j.virusres.2015.10.003
Mohammadi, M. R., Koohi-Habibi, M., Mosahebi, G., & Hajieghrari, B. (2006). Identification of prevalent potyvirus on maize and johnsongrass in corn fields of Tehran province of Iran and a study on some of its properties. Communications in Agricultural and Applied Biological Sciences, 71(3 Pt B), 1311-1319.
Moradi, Z., Mehrvar, M., Nazifi, E., & Zakiaghl, M. (2016). The complete genome sequences of two naturally occurring recombinant isolates of Sugarcane mosaic virus from Iran. Virus Genes, 52(2), 270-280. https://doi.org/10.1007/s11262-016-1302-5
Padhi, A., & Ramu, K. (2011). Genomic evidence of intraspecific recombination in sugarcane mosaic virus. Virus Genes, 42, 282-285. https://doi.org/10.1007/s11262-010-0564-6
Perera, M. F., Filippone, M. P., Ramallo, C. J., Cuenya, M. I., García, M. L., Ploper, L. D., & Castagnaro, A. P. (2009). Genetic diversity among viruses associated with sugarcane mosaic disease in Tucumán, Argentina. Phytopathology, 99(1), 38-49. https://doi.org/10.1094/PHYTO-99-1-0038
Pérez-Quintero, Á. L., Neme, R., Zapata, A., & López, C. (2010). Plant microRNAs and their role in defense against viruses: a bioinformatics approach. BMC Plant Biology, 10(1), 138. https://doi.org/10.1186/1471-2229-10-138
Petchthai, U., Yee, C. S. L., & Wong, S. M. (2018). Resistance to CymMV and ORSV in artificial microRNA transgenic Nicotiana benthamiana plants. Scientific Reports, 8(1), 9958. https://doi.org/10.1038/s41598-018-28388-9
Peterson, S. M., Thompson, J. A., Ufkin, M. L., Sathyanarayana, P., Liaw, L., & Congdon, C. B. (2014). Common features of microRNA target prediction tools. Frontiers in Genetics, 5, 23. https://doi.org/10.3389/fgene.2014.00023
Pinzón, N., Li, B., Martinez, L., Sergeeva, A., Presumey, J., Apparailly, F., & Seitz, H. (2017). microRNA target prediction programs predict many false positives. Genome Research, 27(2), 234-245. doi/10.1101/gr.205146.116
Qiu, L., Luo, H., Zhou, H., Yan, H., Fan, Y., Zhou, Z., ... & Wu, J. (2022). MicroSugar: A database of comprehensive miRNA target prediction framework for sugarcane (Saccharum officinarum L.). Genomics, 114(4), 110420. https://doi.org/10.1016/j.ygeno.2022.110420
Reichling, J. (2010). Plant‐microbe interactions and secondary metabolites with antibacterial, antifungal and antiviral properties. Annual Plant Reviews: Functions and Biotechnology of Plant Secondary Metabolites, 39, 214-347. https://doi.org/10.1002/9781444318876.ch4
Rehmsmeier, M., Steffen, P., Höchsmann, M., & Giegerich, R. (2004). Fast and effective prediction of microRNA/target duplexes. RNA, 10(10), 1507-1517.  https://doi.org/10.1261/rna.5248604
Ricaud, C., Egan, B. T., Gillaspie, A. G., & Hughes, C. G. (Eds.). (2012). Diseases of sugarcane (1st ed.). Elsevier Science, Amsterdam, Netherlands.
Riolo, G., Cantara, S., Marzocchi, C., & Ricci, C. (2020). miRNA targets: from prediction tools to experimental validation. Methods and Protocols, 4(1), 1. https://doi.org/10.3390/mps4010001
Shahriari, A. G., Tahmasebi, A., Ghodoum Parizipour, M. H., Soltani, Z., Tahmasebi, A., & Shahid, M. S. (2025). The crucial role of mitochondrial/chloroplast-related genes in viral genome replication and host defense: integrative systems biology analysis in plant-virus interaction. Frontiers in Microbiology, 16, 1551123. https://doi.org/10.3389/fmicb.2025.1551123
Sharma, P. (2023). Epidemiology of potyviruses infecting crops of Cucurbitaceae. In Plant RNA Viruses (pp. 213-227). Academic Press. https://doi.org/10.1016/B978-0-323-95339-9.00016-8
Urcuqui-Inchima, S., Haenni, A. L., & Bernardi, F. (2001). Potyvirus proteins: a wealth of functions. Virus Research, 74(1-2), 157-175. https://doi.org/10.1016/S0168-1702(01)00220-9
Vijai Singh, V. S., Sinha, O. K., & Rajesh Kumar, R. K. (2003). Progressive decline in yield and quality of sugarcane due to sugarcane mosaic virus. Indian Phytopathology, 56(4), 500-502.
Viswanathan, R., & Balamuralikrishnan, M. J. S. T. (2005). Impact of mosaic infection on growth and yield of sugarcane. Sugar Tech, 7, 61-65. https://doi.org/10.1007/BF02942419
Wang, H., Jiao, X., Kong, X., Hamera, S., Wu, Y., Chen, X., ... & Yan, Y. (2016). A signaling cascade from miR444 to RDR1 in rice antiviral RNA silencing pathway. Plant Physiology, 170(4), 2365-2377. https://doi.org/10.1104/pp.15.01283
Wang, J., Xu, G., Ning, Y., Wang, X., & Wang, G. L. (2022). Mitochondrial functions in plant immunity. Trends in Plant Science, 27(10), 1063-1076. https://doi.org/10.1016/j.tplants.2022.04.007
Wang, W., & Galili, G. (2019). Tuning the orchestra: miRNAs in plant immunity. Trends in Plant Science, 24(3), 189-191. https://doi.org/10.1016/j.tplants.2019.01.009
Wenzhi, W., Ashraf, M. A., Ghaffar, H., Ijaz, Z., Zaman, W. U., Mazhar, H., ... & Zhang, S. (2024). In silico identification of sugarcane genome-encoded microRNAs targeting sugarcane mosaic virus. Microbiology Research, 15(1), 273-289. https://doi.org/10.3390/microbiolres15010019
Wu, L., Zu, X., Wang, S., & Chen, Y. (2012). Sugarcane mosaic virus–long history but still a threat to industry. Crop Protection, 42, 74-78. https://doi.org/10.1016/j.cropro.2012.07.005
Xia, Z., Zhao, Z., Li, M., Chen, L., Jiao, Z., Wu, Y., ... & Fan, Z. (2018). Identification of miRNAs and their targets in maize in response to Sugarcane mosaic virus infection. Plant Physiology and Biochemistry, 125, 143-152. https://doi.org/10.1016/j.plaphy.2018.01.031
Yue, D., Liu, H., & Huang, Y. (2009). Survey of computational algorithms for microRNA target prediction. Current Genomics, 10(7), 478-492. https://doi.org/10.2174/138920209789208219
Zhang, Q., Song, X., Ma, P., Lv, L., Zhang, Y., Deng, J., & Zhang, Y. (2021). Human cytomegalovirus miR-US33as-5p targets IFNAR1 to achieve immune evasion during both lytic and latent infection. Frontiers in Immunology, 12, 628364. https://doi.org/10.3389/fimmu.2021.628364
Zhang, X., Du, P., Lu, L., Xiao, Q., Wang, W., Cao, X., ... & Li, Y. (2008). Contrasting effects of HC-Pro and 2b viral suppressors from Sugarcane mosaic virus and Tomato aspermy cucumovirus on the accumulation of siRNAs. Virology, 374(2), 351-360. https://doi.org/10.1016/j.virol.2007.12.045
Zhao, S., & Li, Y. (2021). Current understanding of the interplays between host hormones and plant viral infections. PLoS Pathogens, 17(2), e1009242. https://doi.org/10.1371/journal.ppat.1009242
Zheng, Z., Wang, N., Jalajakumari, M., Blackman, L., Shen, E., Verma, S., ... & Millar, A. A. (2020). miR159 represses a constitutive pathogen defense response in tobacco. Plant Physiology, 182(4), 2182-2198. https://doi.org/10.1104/pp.19.00786
Zhou, Y., Xu, Z., Duan, C., Chen, Y., Meng, Q., Wu, J., ... & Li, X. (2016). Dual transcriptome analysis reveals insights into the response to Rice black-streaked dwarf virus in maize. Journal of Experimental Botany, 67(15), 4593-4609. https://doi.org/10.1093/jxb/erw244
Zhu, T., Zhou, X., Zhang, J. L., Zhang, W. H., Zhang, L. P., You, C. X., ... & Guo, S. L. (2022). Ethylene‐induced NbMYB4L is involved in resistance against tobacco mosaic virus in Nicotiana benthamiana. Molecular Plant Pathology, 23(1), 16-31. https://doi.org/10.1111/mpp.13139