Ajam-Hosseini, M., Akhoondi, F., Parvini, F., & Fahimi, H. (2024). Gram-negative bacterial sRNAs encapsulated in OMVs: an emerging class of therapeutic targets in diseases.
Frontiers in Cellular and Infection Microbiology, 13, 1305510.
https://doi.org/10.3389/fcimb.2023.1305510
Akhgarjand, C., Vahabi, Z., Shab-Bidar, S., Etesam, F., & Djafarian, K. (2022). Effects of probiotic supplements on cognition, anxiety, and physical activity in subjects with mild and moderate Alzheimer’s disease: A randomized, double-blind, and placebo-controlled study.
Frontiers in Aging Neuroscience, 14, 1032494.
https://doi.org/10.3389/fnagi.2022.1032494
Arntzen, M. Ø., Karlskås, I. L., Skaugen, M., Eijsink, V. G. H., & Mathiesen, G. (2015). Proteomic investigation of the response of Enterococcus faecalis V583 when cultivated in urine.
PLoS One, 10(4).
https://doi.org/10.1371/JOURNAL.PONE.0126694
Broadbent, J. R., Larsen, R. L., Deibel, V., & Steele, J. L. (2010). Physiological and transcriptional response of
Lactobacillus casei ATCC 334 to acid stress.
Journal of Bacteriology, 192(9), 2445-2458.
https://doi.org/10.1128/JB.01618-09
Calderini, E., Celebioglu, H. U., Villarroel, J., Jacobsen, S., Svensson, B., & Pessione, E. (2017). Comparative proteomics of oxidative stress response of
Lactobacillus acidophilus NCFM reveals effects on DNA repair and cysteine de novo synthesis.
Proteomics, 17(5) 1600178.
https://doi.org/10.1002/PMIC.201600178
Cappa, F., Cattivelli, D., & Cocconcelli, P. S. (2005). The uvrA gene is involved in oxidative and acid stress responses in
Lactobacillus helveticus CNBL1156.
Research in Microbiology, 156(10), 1039-1047.
https://doi.org/10.1016/j.resmic.2005.06.003
Chen, J., Zhao, T., Li, H., Xu, W., Maas, K., Singh, V., ... & Cong, X. S. (2024). Multi-omics analysis of gut microbiota and host transcriptomics reveal dysregulated immune response and metabolism in young adults with irritable bowel syndrome.
International Journal of Molecular Sciences, 25(6), 3514.
https://doi.org/10.3390/ijms25063514
Christodoulou, D., Link, H., Fuhrer, T., Kochanowski, K., Gerosa, L., & Sauer, U. (2018). Reserve flux capacity in the pentose phosphate pathway enables
Escherichia coli's rapid response to oxidative stress.
Cell Systems, 6(5), 569-578.
https://doi.org/10.1016/j.cels.2018.04.009
Crowley, D. J., Boubriak, I., Berquist, B. R., Clark, M., Richard, E., Sullivan, L., ... & McCready, S. (2006). The
uvrA,
uvrB and
uvrC genes are required for repair of ultraviolet light induced DNA photoproducts in
Halobacterium sp. NRC-1.
Saline Systems, 2, 1-13.
https://doi:10.1186/1746-1448-2-11
Deaconescu, A. M., Chambers, A. L., Smith, A. J., Nickels, B. E., Hochschild, A., Savery, N. J., & Darst, S. A. (2006). Structural basis for bacterial transcription-coupled DNA repair. Cell, 124(3), 507-520. https://doi: 10.1016/j.cell.2005.11.045
Dhawale, A., Bindal, G., Rath, D., & Rath, A. (2021). DNA repair pathways important for the survival of
Escherichia coli to hydrogen peroxide mediated killing.
Gene, 768, 145297.
https://doi.org/10.1016/j.gene.2020.145297
Duwat, P., Cesselin, B., Sourice, S., & Gruss, A. (2000).
Lactococcus lactis, a bacterial model for stress responses and survival.
International Journal of Food Microbiology, 55(1-3), 83-86.
https://doi.org/10.1016/S01681605(00)00179-3
Fei, Y. Y., Bhat, J. A., Gai, J. Y., & Zhao, T. J. (2020). Global transcriptome profiling of Enterobacter strain NRS-1 in response to hydrogen peroxide stress treatment.
Applied Biochemistry and Biotechnology, 191, 1638-1652.
https://doi.org/10.1007/S12010-020-03313-X
López de Felipe, F., De Las Rivas, B., & Muñoz, R. (2021). Molecular responses of lactobacilli to plant phenolic compounds: a comparative review of the mechanisms involved.
Antioxidants, 11(1), 18.
https://doi.org/10.3390/antiox11010018
Fernandez, A., Ogawa, J., Penaud, S., Boudebbouze, S., Ehrlich, D., Van De Guchte, M., & Maguin, E. (2008). Rerouting of pyruvate metabolism during acid adaptation in
Lactobacillus bulgaricus.
Proteomics, 8(15), 3154-3163.
https://doi.org/10.1002/PMIC.200700974
Gu, L., Liu, X., Wang, Y. Q., Zhou, Y. T., Zhu, H. W., Huang, J., ... & Zhou, H. (2020). Revelation of
AbfR in regulation of mismatch repair and energy metabolism in S. epidermidis by integrated proteomic and metabolomic analysis.
Journal of Proteomics, 226, 103900.
https://doi.org/10.1016/j.jprot.2020.103900
Hanna, M. N., Ferguson, R. J., Li, Y. H., & Cvitkovitch, D. G. (2001).
uvrA is an acid-inducible gene involved in the adaptive response to low pH in
Streptococcus mutans.
Journal of Bacteriology, 183(20), 5964-5973.
https://doi.org/10.1128/JB.183.20.5964-5973.2001
Hartke, A., Bouche, S., Laplace, J. M., Benachour, A., Boutibonnes, P., & Auffray, Y. (1995). UV-inducible proteins and UV-induced cross-protection against acid, ethanol, H
2O
2 or heat treatments in
Lactococcus lactis subsp. lactis.
Archives of Microbiology, 163, 329-336.
https://doi.org/10.1007/BF00404205
Heunis, T., Deane, S., Smit, S., & Dicks, L. M. (2014). Proteomic profiling of the acid stress response in
Lactobacillus plantarum 423.
Journal of Proteome Research, 13(9), 4028-4039.
https://doi.org/10.1021/PR500353X
Heydari, A., Parvini, F., & Fard, N. A. (2022). Functional foods and antioxidant effects: emphasizing the role of probiotics.
Current Topics in Functional Food. IntechOpen.
https://doi.org/10.5772/INTECHOPEN.104322
Hong, D., Kim, H. K., Yang, W., Yoon, C., Kim, M., Yang, C. S., & Yoon, S. (2024). Integrative analysis of single-cell RNA-seq and gut microbiome metabarcoding data elucidates macrophage dysfunction in mice with DSS-induced ulcerative colitis.
Communications Biology, 7(1), 731.
https://doi.org/10.1186/s12967-025-06147-5
Jin, J., Zhang, B., Guo, H., Cui, J., Jiang, L., Song, S., ... & Ren, F. (2012). Mechanism analysis of acid tolerance response of
Bifidobacterium longum subsp. longum BBMN 68 by gene expression profile using RNA-sequencing.
PLoS One, 7(12), e50777.
https://doi.org/10.1371/JOURNAL.PONE.0050777
Johnsborg, O., & Håvarstein, L. S. (2009). Regulation of natural genetic transformation and acquisition of transforming DNA in
Streptococcus pneumoniae.
FEMS Microbiology Reviews, 33(3), 627-642.
https://doi.org/10.1111/j.1574-6976.2009.00167.x
Kajfasz, J. K., & Quivey Jr, R. G. (2011). Responses of lactic acid bacteria to acid stress. Stress Responses of Lactic Acid Bacteria (pp. 23-53). Boston, Springer US.
Li, M., Wang, Q., Song, X., Guo, J., Wu, J., & Wu, R. (2019). iTRAQ-based proteomic analysis of responses of
Lactobacillus plantarum FS5-5 to salt tolerance.
Annals of Microbiology, 69(4), 377-394.
https://doi.org/10.1007/S13213-018-1425-0
Lv, L. X., Yan, R., Shi, H. Y., Shi, D., Fang, D. Q., Jiang, H. Y., ... & Li, L. J. (2017). Integrated transcriptomic and proteomic analysis of the bile stress response in probiotic
Lactobacillus salivarius LI01.
Journal of Proteomics, 150, 216-229.
https://doi.org/10.1016/j.jprot.2016.08.021
Martin, H. A., Porter, K. E., Vallin, C., Ermi, T., Contreras, N., Pedraza-Reyes, M., & Robleto, E. A. (2019). Mfd protects against oxidative stress in
Bacillus subtilis independently of its canonical function in DNA repair.
BMC Microbiology, 19, 1-14.
https://doi.org/10.1186/S12866-019-1394-X
Mazzeo, M. F., Lippolis, R., Sorrentino, A., Liberti, S., Fragnito, F., & Siciliano, R. A. (2015).
Lactobacillus acidophilus-rutin interplay investigated by proteomics.
PLoS One, 10(11), e0142376.
https://doi.org/10.1371/JOURNAL.PONE.0142376
Priya, S., Burns, M. B., Ward, T., Mars, R. A., Adamowicz, B., Lock, E. F., ... & Blekhman, R. (2022). Identification of shared and disease-specific host gene-microbiome associations across human diseases using multi-omic integration.
Nature Microbiology, 7(6), 780-795.
https://doi.org/10.1038/s41564-022-01121-z
Rallu, F., Gruss, A., Ehrlich, S. D., & Maguin, E. (2000). Acid- and multistress-resistant mutants of
Lactococcus lactis: Identification of intracellular stress signals.
Molecular Microbiology, 35(3), 517-528.
https://doi.org/10.1046/J.1365-2958.2000.01711 .X
Saio, T., Guan, X., Rossi, P., Economou, A., & Kalodimos, C. G. (2014). Structural basis for protein antiaggregation activity of the trigger factor chaperone. Science, 344(6184), 1250494. https://doi. 10.1126/science.1250494
Truglio, J. J., Croteau, D. L., Van Houten, B., & Kisker, C. (2006). Prokaryotic nucleotide excision repair: The UvrABC system.
Chemical Reviews, 106(2), 233-252.
https://doi.org/10.1021/CR040471U
Van Bokhorst-van de Veen, H., Abee, T., Tempelaars, M., Bron, P. A., Kleerebezem, M., & Marco, M. L. (2011). Short- and long-term adaptation to ethanol stress and its cross-protective consequences in
Lactobacillus plantarum.
Applied and Environmental Microbiology, 77(15), 5247-5256.
https://doi.org/10.1128/AEM.00515-11
Yamamoto, N., Kato, R., & Kuramitsu, S. (1996). Cloning, sequencing and expression of the
uvrA gene from an extremely thermophilic bacterium,
Thermus thermophilus HB8.
Gene, 171(1), 103-106.
https://doi.org/10.1016/0378-1119(96)00052-2
Zhang, C., Gui, Y., Chen, X., Chen, D., Guan, C., Yin, B., ... & Gu, R. (2020). Transcriptional homogenization of
Lactobacillus rhamnosus hsryfm 1301 under heat stress and oxidative stress.
Applied Microbiology and Biotechnology, 104(6), 2611-2621.
https://doi.org/10.1007/S00253-020-10407-3
Zhang, H., Zhang, C., Liu, H., Chen, Q., & Kong, B. (2021). Proteomic response strategies of
Pediococcus pentosaceus R1 isolated from Harbin dry sausages to oxidative stress.
Food Bioscience, 44, 101364.
https://doi.org/10.1016/j.fbio.2021.101364
Zhang, M., Chen, J., Zhang, J., & Du, G. (2014). The effects of RecO deficiency in
Lactococcus lactis NZ9000 on resistance to multiple environmental stresses.
Journal of the Science of Food and Agriculture, 94(15), 3125-3133.
https://doi.org/10.1002/JSFA.6662
Zhao, S., Zhang, Q., Hao, G., Liu, X., Zhao, J., Chen, Y., ... & Chen, W. (2014). The protective role of glycine betaine in
Lactobacillus plantarum ST-III against salt stress.
Food Control, 44, 208-213.
https://doi.org/10.1016/j.foodcont.2014.04.002
Zheng, Y., Chen, X., Wang, J., Yin, H., Wang, L., & Wang, M. (2015). Expression of gene
uvrA from
Acetobacter pasteurianus and its tolerance to acetic acid in
Escherichia coli.
Advances in Applied Biotechnology: Proceedings of the 2nd International Conference on Applied Biotechnology (ICAB 2014)-Volume II (pp. 163-169). Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-662-46318-5_18
Zolghadrpour, M. A., Jowshan, M. R., Seyedmahalleh, M. H., Imani, H., Karimpour, F., & Asghari, S. (2024). Consumption of a new developed synbiotic yogurt improves oxidative stress status in adults with metabolic syndrome: a randomized controlled clinical trial.
Scientific Reports, 14(1), 20333.
https://doi.org/10.1038/s41598-024-71264-y