Transposable Elements as Regulators of Gene Expression, Evolutionary Forces, and Disease Contributors

Document Type : Review Article

Authors

1 Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA

2 Integrated Germline Biology Group Laboratory, Osaka University, Osaka, Japan

Abstract

Transposable elements (TEs), once considered "junk DNA," are now recognized as significant players in gene regulation, genome evolution, and disease development. These mobile genetic sequences act as enhancers, promoters, or silencers, influencing gene expression in various species. This review explores the multifaceted roles of TEs in gene regulation, focusing on organisms such as maize, Drosophila, and mice. The present study closely examined the evolutionary impact of TEs, highlighting how they contribute to genetic diversity and innovation through chimeric transcripts and exaptation. This research also discussed the involvement of TEs by exertion of genomic instability and oncogenic activation in diseases like cancer, neurological disorders, and autoimmune conditions. Finally, it discussed experimental approaches for analyzing TE-fusion transcripts, providing insights into their evolutionary and pathogenic potentials. This comprehensive overview underscores the dual nature of TEs as drivers of genetic innovation and contributors to disease. It further highlights the need to study TE mechanisms to fully understand the complex roles of TEs in biology and disease.

Keywords

Main Subjects


Wells, J.N., & Feschotte, C. (2020). A field guide to eukaryotic transposable elements. Annual Review of Genetics, 54, 539-561. https://doi.org/10.1146/annurev-genet-040620-022145
Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Dewar, K., … International Human Genome Sequencing Consortium. (2001). Initial sequencing and analysis of the human genome. Nature, 409 (6822), 860-921. https://doi.org/10.1038/35057062
Chung, E.B., Elde, N.C., & Feschotte, C. (2017). Regulatory activities of transposable elements: from conflicts to benefits. Nature Reviews Genetics, 18(2), 71-86. https://doi.org/10.1038/nrg.2016.139
McClintock, B. (1956). Controlling elements and the gene. Cold Spring Harbor Symposia on Quantitative Biology, 21, 197-216. https://doi.org/10.1101/SQB.1956.021.01.017
Britten, R.J., & Davidson, E.H. (1971). Repetitive and non-repetitive DNA sequences and a speculation on the origins of evolutionary novelty. The Quarterly Review of Biology, 46(2), 111-138. https://doi.org/10.1016/j.dci.2025.105358
Slotkin, R.K., & Martienssen, R. (2007). Transposable elements and the epigenetic regulation of the genome. Nature Reviews Genetics, 8(4), 272-285. https://doi.org/10.1038/nrg2072
Cosby, R.L., Judd, J., Zhang, R., Zhong, A., Garry, N., Pritham, E.J. and Feschotte, C., (2021). Recurrent evolution of vertebrate transcription factors by transposase capture. Science, 371(6531), eabc6405. https://doi.org/10.1126/science.abc6405
Burns, K.H. (2017). Transposable elements in cancer. Nature Reviews Cancer, 17(7), 415-424. https://doi.org/10.1038/nrc.2017.35
Jang, H. S., Shah, N. M., Du, A. Y., Dailey, Z. Z., Pehrsson, E. C., Godoy, P. M., ... & Wang, T. (2019). Transposable elements drive widespread expression of oncogenes in human cancers. Nature Genetics, 51(4), 611-617. https://doi.org/10.1038/s41588-019-0373-3
Batut, P., & Gingeras, T.R. (2013). RAMPAGE: promoter activity profiling by paired-end sequencing of 5′ complete cDNAs. Current Protocols in Molecular Biology, 104(1), 25B- 11. https://doi.org/10.1002/0471142727.mb25b11s104
Lisch, D. (2013). How important are transposons for plant evolution? Nature Reviews Genetics, 14(1), 49-61. https://doi.org/10.1038/nrg3374
Makarevitch, I., Waters, A. J., West, P. T., Stitzer, M., Hirsch, C. N., Ross-Ibarra, J., & Springer, N. M. (2015). Transposable elements contribute to activation of maize genes in response to abiotic stress. PLoS Genetics, 11(1), e1004915. https://doi.org/10.1371/journal.pgen.1005566
Flemr, M., Malik, R., Franke, V., Nejepinska, J., Sedlacek, R., Vlahovicek, K., & Svoboda, P. (2013). A retrotransposon-driven dicer isoform directs endogenous small interfering RNA production in mouse oocytes. Cell, 155(4), 807-816. https://doi.org/10.1016/j.cell.2013.10.001
Chung, H., Bogwitz, M. R., McCart, C., Andrianopoulos, A., Ffrench-Constant, R. H., Batterham, P., & Daborn, P. J. (2007). Cis-regulatory elements in the Accord retrotransposon result in tissue-specific expression of the Drosophila melanogaster insecticide resistance gene Cyp6g1. Genetics, 175(3), 1071-1077. https://doi.org/10.1534/genetics.106.066597
Studer, A., Zhao, Q., Ross-Ibarra, J., & Doebley, J. (2011). Identification of a functional transposon insertion in the maize domestication gene tb1. Nature Genetics, 43(11), 1160-1163. https://doi.org/10.1038/ng.944
Bai, L., & Brutnell, T.P. (2011). The Activator/Dissociation transposable elements comprise a two-component gene regulatory switch that controls endogenous gene expression in maize. Genetics, 187(3), 749-759. https://doi.org/10.1534/genetics.110.124149
Rebollo, R., Karimi, M. M., Bilenky, M., Gagnier, L., Miceli-Royer, K., Zhang, Y., ... & Mager, D. L. (2011). Retrotransposon-induced heterochromatin spreading in the mouse revealed by insertional polymorphisms. PLoS Genetics, 7(9), e1002301. https://doi.org/10.1371/journal.pgen.1002301
Ma, G., Babarinde, I. A., Zhou, X., & Hutchins, A. P. (2022). Transposable elements in pluripotent stem cells and human disease. Frontiers in Genetics, 13, 902541. https://doi.org/10.3389/fgene.2022.902541.
Cordaux, R., Udit, S., Batzer, M.A., & Feschotte, C. (2006). Birth of a chimeric primate gene by capture of the transposase gene from a mobile element. Proceedings of the National Academy of Sciences, 103(21), 8101-8106. https://doi.org/10.1073/pnas.0601161103
Modzelewski, A. J., Shao, W., Chen, J., Lee, A., Qi, X., Noon, M., ... & He, L. (2021). A mouse-specific retrotransposon drives a conserved Cdk2ap1 isoform essential for development. Cell, 184(22), 5541-5558. https://doi.org/10.1016/j.cell.2021.09.021
Salvi, S., Sponza, G., Morgante, M., Tomes, D., Niu, X., Fengler, K. A., ... & Tuberosa, R. (2007). Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proceedings of the National Academy of Sciences, 104(27), 11376-11381. https://doi.org/10.1073/pnas.0704145104
Babaian, A., & Mager, D. L. (2016a). Endogenous retroviral promoter exaptation in human cancer. Mobile DNA, 7 (1), 24. https://doi.org/10.1186/s13100-016-0081-9
Babaian, A., & Mager, D. L. (2016b). Endogenous retroviruses in development and disease. Genome Biology, 17 (1), 258. https://doi.org/10.1186/s13059-016-1124-8
Reilly, M. T., Faulkner, G. J., Dubnau, J., Ponomarev, I., & Gage, F. H. (2013). The role of transposable elements in health and diseases of the central nervous system. Journal of Neuroscience, 33 (45), 17577–17586. https://doi.org/10.1523/JNEUROSCI.3964-13.2013
Saleh, A., Macia, A., & Muotri, A. R. (2019). Transposable elements, inflammation, and neurological disease. Frontiers in Nneurology, 10, 894. https://doi.org/10.3389/fneur.2019.00894
Crow, Y. J., & Rehwinkel, J. (2009). Aicardi-Goutieres syndrome and related phenotypes: linking nucleic acid metabolism with autoimmunity. Human Molecular Genetics, 18(R2), R130-R136. https://doi.org/10.1093/hmg/ddp293
Payer, L. M., & Burns, K. H. (2019). Transposable elements in human genetic disease. Nature Reviews Genetics, 20(12), 760-772. https://doi.org/10.1038/s41576-019-0165-8.
De Cecco, M., Ito, T., Petrashen, A. P., Elias, A. E., Skvir, N. J., Criscione, S. W., … Sedivy, J. M. (2019). LINE-1 derepression in senescent cells triggers interferon and inflammaging. Nature, 568 (7752), 405-409. https://doi.org/10.1038/s41586-019-1087-5
Lipatov, M., Lenkov, K., Petrov, D. A., & Bergman, C. M. (2005). Paucity of chimeric gene-transposable element transcripts in the Drosophila melanogaster genome. BMC Biology, 3, 1-18. https://doi.org/10.1186/1741-7007-3-24.
Faulkner, G. J., Kimura, Y., Daub, C. O., Wani, S., Plessy, C., Irvine, K. M., ... & Carninci, P. (2009). The regulated retrotransposon transcriptome of mammalian cells. Nature Genetics, 41(5), 563-571. https://doi.org/10.1038/ng.368
Pinson, M.E., Pogorelcnik, R., Court, F., Arnaud, P. and Vaurs-Barrière, C., (2018). CLIFinder: identification of LINE-1 chimeric transcripts in RNA-seq data. Bioinformatics, 34(4), 688-690. https://doi.org/10.1093/bioinformatics/btx671
Babaian, A., Thompson, I. R., Lever, J., Gagnier, L., Karimi, M. M., & Mager, D. L. (2019). LIONS: analysis suite for detecting and quantifying transposable element initiated transcription from RNA-seq. Bioinformatics, 35(19), 3839-3841. https://doi.org/10.1093/bioinformatics/btz130
Treiber, C. D., & Waddell, S. (2020). Transposon expression in the Drosophila brain is driven by neighboring genes and diversifies the neural transcriptome. Genome Research, 30 (11), 1559-1569. https://doi.org/10.1101/gr.265938.120
Oliveira, D. S., Fablet, M., Larue, A., Vallier, A., Carareto, C. M., Rebollo, R., & Vieira, C. (2023). ChimeraTE: a pipeline to detect chimeric transcripts derived from genes and transposable elements. Nucleic Acids Research, 51(18), 9764-9784. https://doi.org/10.1093/nar/gkad671
Wang, S., Wang, M., Ichino, L., Boone, B. A., Zhong, Z., Papareddy, R. K., ... & Jacobsen, S. E. (2024). MBD2 couples DNA methylation to transposable element silencing during male gametogenesis. Nature Plants, 10, 13-24. https://doi.org/10.1038/s41477-023-01599-3
Guo, W., Wang, D., & Lisch, D. (2021). RNA-directed DNA methylation prevents rapid and heritable reversal of transposon silencing under heat stress in Zea mays. PLoS Genetics, 17(6), e1009326. https://doi.org/10.1371/journal.pgen.1009326
Liu, S., De Jonge, J., Trejo-Arellano, M., Santos-González, J., Köhler, C., & Hennig, L. (2020). Role of H1 and DNA methylation in selective regulation of transposable elements during heat stress. New Phytologist, 229(4), 2238-2250. https://doi.org/10.1111/nph.17018
Colonna Romano, N., & Fanti, L. (2022). Transposable elements: major players in shaping genomic and evolutionary patterns. Cells, 11(6), 1048. https://doi.org/10.3390/cells11061048
Niu, X. M., Xu, Y. C., Li, Z. W., Bian, Y. T., Hou, X. H., Chen, J. F., ... & Guo, Y. L. (2019). Transposable elements drive rapid phenotypic variation in Capsella rubella. Proceedings of the National Academy of Sciences, 116(14), 6908-6913. https://doi.org/10.1073/pnas.1811498116
Song, X., & Cao, X. (2017). Transposon-mediated epigenetic regulation contributes to phenotypic diversity and environmental adaptation in rice. Current Opinion in Plant Biology, 36, 111-118. https://doi.org/10.1016/j.pbi.2017.02.004
VandenDriessche, T., Ivics, Z., Izsvák, Z., & Chuah, M. K. (2009). Emerging potential of transposons for gene therapy and generation of induced pluripotent stem cells. Blood, 114(8), 1461-1468. https://doi.org/10.1182/blood-2009-04-210427
Deniger, D. C., Pasetto, A., Tran, E., Parkhurst, M. R., Cohen, C. J., Robbins, P. F., … Rosenberg, S. A. (2016). Stable, nonviral expression of mutated tumor neoantigen-specific T-cell receptors using the Sleeping Beauty transposon/transposase system. The Journal of the American Society of Gene Therapy, 24 (6), 1078-1089. https://doi.org/10.1038/mt.2016.6