Transcriptomic Response of Arabidopsis thaliana to Pseudomonas syringae Infection: An In Silico Approach

Document Type : Research Article

Authors

1 Department of Agriculture and Natural Resources, Higher Education Center of Eghlid, Eghlid, Iran

2 Department of Plant Protection, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran

3 Plant Virology Research Center, School of Agriculture, Shiraz University, Shiraz, Iran

4 Department of Agriculture, Minab Higher Education Center, University of Hormozgan, Bandar Abbas, Iran

5 Department of Plant Physiology and Metabolomics, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár 2462, Hungary

Abstract

Plant stresses caused by phytopathogenic bacteria are categorized into biotic stresses. The study aimed to perform a meta-analysis of A. thaliana transcriptomic data in response to infection by P. syringae and P. syringae pv. maculicola. The gene expression and transcription factors (TFs) of A. thaliana infected by the bacteria were investigated using published RNA-Seq data. Also, critical factors, including hub genes, protein-protein interaction (PPI), and micro RNAs (miRNAs), were analyzed. A total number of 22 biological pathways were significantly enriched with up-/down-regulated differentially expressed genes (DEGs) in the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Also, 39 TFs of A. thaliana were altered during the bacterial infection. Moreover, 5034 DEGs were significantly different from non-stressed plants, of which 2291 and 2743 DEGs were up- and down-regulated, respectively. The expression of genes related to stress response, cellular process, metabolic process, and stimulus response was up-regulated in the bacteria-infected plant. In contrast, the down-regulation of genes involved in the cellular and biosynthesis processes was observed. Regarding molecular function, 412 genes associated with kinase, catalase, and oxidoreductase activities were up-regulated in the bacteria-infected plants, while down-regulation of hydrolase and transferase activity genes was observed. The PPI network showed 107 nodes and 189 edges. The most important hubs genes included MYC2, WRKY40, WRKY33, and other genes. Moreover, the total number of 41 miRNA families was determined during the A. thaliana-bacterium interaction. Infection of A. thaliana by P. syringae and P. syringae pv. maculicola induced the expression of some stress-responsive genes and pathways among which some defense-related hub genes were identified. The results provide a clearer understanding of the strategies applied to program defense pathways in bacterial infection of A. thaliana.

Keywords

Main Subjects


Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2003). Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. The Plant Cell, 15(1), 63-78. https://doi.org/10.1105/tpc.006130
Ahuja, I., Kissen, R., & Bones, A. M. (2012). Phytoalexins in defense against pathogens. Trends in Plant Science, 17(2), 73-90. https://doi.org/10.1016/j.tplants.2011.11.002
Arnold, D. L., & Preston, G. M. (2019). Pseudomonas syringae: enterprising epiphyte and stealthy parasite. Microbiology, 165(3), 251-253. https://doi.org/10.1099/mic.0.000715
Balan, B., Marra, F. P., Caruso, T., & Martinelli, F. (2018). Transcriptomic responses to biotic stresses in Malus x domestica: a meta-analysis study. Scientific Reports, 8(1), 1970. https://doi.org/10.1038/s41598-018-19348-4
Bari, R., & Jones, J. D. (2009). Role of plant hormones in plant defence responses. Plant Molecular Biology, 69, 473-488. https://doi.org/10.1101/gad.297704
Bednarek, P. (2012). Chemical warfare or modulators of defence responses- the function of secondary metabolites in plant immunity. Current Opinion in Plant Biology, 15(4), 407-414. https://doi.org/10.1016/j.pbi.2012.03.002
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Methodological, 57(1), 289-300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
Berger, S., Papadopoulos, M., Schreiber, U., Kaiser, W., & Roitsch, T. (2004). Complex regulation of gene expression, photosynthesis and sugar levels by pathogen infection in tomato. Physiologia Plantarum, 122(4), 419-428. https://doi.org/10.1111/j.1399-3054.2004.00433.x
Bernsdorff, F., Döring, A.-C., Gruner, K., Schuck, S., Bräutigam, A., & Zeier, J. (2016). Pipecolic acid orchestrates plant systemic acquired resistance and defense priming via salicylic acid-dependent and-independent pathways. The Plant Cell, 28(1), 102-129. https://doi.org/10.1105/tpc.15.00496
Bhargava, A., Clabaugh, I., To, J. P., Maxwell, B. B., Chiang, Y.-H., Schaller, G. E., Loraine, A., & Kieber, J. J. (2013). Identification of cytokinin-responsive genes using microarray meta-analysis and RNA-Seq in Arabidopsis. Plant Physiology, 162(1), 272-294. https://doi.org/10.1104/pp.113.217026
Biniaz, Y., Tahmasebi, A., Tahmasebi, A., Albrectsen, B. R., Poczai, P., & Afsharifar, A. (2022). Transcriptome meta-analysis identifies candidate hub genes and pathways of pathogen stress responses in Arabidopsis thaliana. Biology, 11(8), 1155. https://doi.org/10.3390/biology11081155
Bobik, K., & Burch-Smith, T. M. (2015). Chloroplast signaling within, between and beyond cells. Frontiers in Plant Science, 6, 781. https://doi.org/10.3389/fpls.2015.00781
Boter, M., Ruíz-Rivero, O., Abdeen, A., & Prat, S. (2004). Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis. Genes and Development, 18(13), 1577-1591. https://doi.org/10.1101/gad.297704
Casassola, A., Brammer, S. P., Chaves, M. S., Martinelli, J. A., Grando, M. F., & Denardin, N. D. A. (2013). Gene expression: a review on methods for the study of defense-related gene differential expression in plants. American Journal of Plant Sciences, 4(12), 64-73. https://doi.org/10.4236/ajps.2013.412a3008
Cheng, M.-C., Liao, P.-M., Kuo, W.-W., & Lin, T.-P. (2013). The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiology, 162(3), 1566-1582. https://doi.org/10.1104/pp.113.221911
Davletova, S., Schlauch, K., Coutu, J., & Mittler, R. (2005). The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiology, 139(2), 847-856. https://doi.org/10.1104/pp.105.068254
Dodds, P. N., & Rathjen, J. P. (2010). Plant immunity: towards an integrated view of plant-pathogen interactions. Nature Reviews Genetics, 11(8), 539-548. https://doi.org/10.1038/nrg2812
Du, Z., Zhou, X., Ling, Y., Zhang, Z., & Su, Z. (2010). agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Research, 38(suppl_2), W64-W70. https://doi.org/10.1093/nar/gkq310
Ewing, B., & Green, P. (1998). Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Research, 8(3), 186-194. https://doi.org/10.1101/gr.8.3.186
Fernández-Bautista, N., Fernández-Calvino, L., Muñoz, A., & Castellano, M. M. (2017). HOP3 a new regulator of the ER stress response in Arabidopsis with possible implications in plant development and response to biotic and abiotic stresses. Plant Signaling and Behavior, 12(5), e1317421. https://doi.org/10.1080/15592324.2017.1317421.
Filichkin, S. A., Cumbie, J. S., Dharmawardhana, P., Jaiswal, P., Chang, J. H., Palusa, S. G., Reddy, A., Megraw, M., & Mockler, T. C. (2015). Environmental stresses modulate abundance and timing of alternatively spliced circadian transcripts in Arabidopsis. Molecular Plant, 8(2), 207-227. https://doi.org/10.1016/j.molp.2014.10.011
Gangadharan, A., Sreerekha, M.-V., Whitehill, J., Ham, J. H., & Mackey, D. (2013). The Pseudomonas syringae pv. tomato type III effector HopM1 suppresses Arabidopsis defenses independent of suppressing salicylic acid signaling and of targeting AtMIN7. PloS one, 8(12), e82032. https://doi.org/10.1371/journal.pone.0082032
Goritschnig, S., Zhang, Y., & Li, X. (2007). The ubiquitin pathway is required for innate immunity in Arabidopsis. The Plant Journal, 49(3), 540-551. https://doi.org/10.1111/j.1365-313x.2006.02978.x
Goto, M. (1992). Fundamentals of bacterial plant pathology. London: Academic Press. https://doi.org/10.1016/b978-0-12-293465-0.50016-9
Hakata, M., Muramatsu, M., Nakamura, H., Hara, N., Kishimoto, M., Iida-Okada, K., ... & Ichikawa, H (2017). Overexpression of TIFY genes promotes plant growth in rice through jasmonate signaling. Bioscience, Biotechnology, and Biochemistry, 81(5), 906-913. https://doi.org/10.1080/09168451.2016.1274638
Hanif, M., Rahman, M. U., Gao, M., Yang, J., Ahmad, B., Yan, X., & Wang, X. (2018). Heterologous expression of the grapevine JAZ7 gene in Arabidopsis confers enhanced resistance to powdery mildew but not to Botrytis cinerea. International Journal of Molecular Sciences, 19(12), 3889. https://doi.org/10.3390/ijms19123889
Hartmann, T. (2008). The lost origin of chemical ecology in the late 19th century. Proceedings of the National Academy of Sciences, 105(12), 4541-4546. https://doi.org/10.1073/pnas.0709231105
Hawker, N. P., & Bowman, J. L. (2004). Roles for class III HD-Zip and KANADI genes in Arabidopsis root development. Plant Physiology, 135(4), 2261-2270. https://doi.org/10.1104/pp.104.040196
Howard, B. E., Hu, Q., Babaoglu, A. C., Chandra, M., Borghi, M., Tan, X., He, L., Winter-Sederoff, H., Gassmann, W., & Veronese, P. (2013). High-throughput RNA sequencing of pseudomonas-infected Arabidopsis reveals hidden transcriptome complexity and novel splice variants. PloS one, 8(10), e74183. https://doi.org/10.1371/journal.pone.0074183
Hu, Y., Zhong, S., Zhang, M., Liang, Y., Gong, G., Chang, X., Tan, F., Yang, H., Qiu, X., & Luo, L. (2020). Potential role of photosynthesis in the regulation of reactive oxygen species and defence responses to Blumeria graminis f. sp. tritici in wheat. International Journal of Molecular Sciences, 21(16), 5767. https://doi.org/10.3390/ijms21165767
Jiang, Z., He, F., & Zhang, Z. (2017). Large-scale transcriptome analysis reveals arabidopsis metabolic pathways are frequently influenced by different pathogens. Plant Molecular Biology, 94, 453-467. https://doi.org/10.1007/s11103-017-0617-5
Kong, X., Yang, M., Le, B. H., He, W., & Hou, Y. (2022). The master role of siRNAs in plant immunity. Molecular Plant Pathology, 23(10), 1565-1574. https://doi.org/10.1111/mpp.v23.10
Lewis, L. A., Polanski, K., de Torres-Zabala, M., Jayaraman, S., Bowden, L., Moore, J., ... & Grant, M. (2015). Transcriptional dynamics driving MAMP-triggered immunity and pathogen effector-mediated immunosuppression in Arabidopsis leaves following infection with Pseudomonas syringae pv tomato DC3000. The Plant Cell, 27(11), 3038-3064. https://doi.org/10.1105/tpc.15.00471
Li, X., Li, X., Li, M., Yan, Y., Liu, X., & Li, L. (2016). Dual function of NAC072 in ABF3-mediated ABA-responsive gene regulation in Arabidopsis. Frontiers in Plant Science, 7, 1075. https://doi.org/10.3389/fpls.2016.01075
Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., ... & Foster, G. D. (2012). Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology, 13(6), 614-629. https://doi.org/10.1111/j.1364-3703.2012.00804.x
Misra, B. B., de Armas, E., & Chen, S. (2016). Differential metabolomic responses of PAMP-triggered immunity and effector-triggered immunity in Arabidopsis suspension cells. Metabolomics, 12, 1-15. https://doi.org/10.1007/s11306-016-0984-y
Mizoguchi, T., Wheatley, K., Hanzawa, Y., Wright, L., Mizoguchi, M., Song, H.-R., Carré, I. A., & Coupland, G. (2002). LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis. Developmental Cell, 2(5), 629-641. https://doi.org/10.1016/s1534-5807(02)00170-3
Nguyen, X. C., Kim, S. H., Hussain, S., An, J., Yoo, Y., Han, H. J., Yoo, J. S., Lim, C. O., Yun, D.-J., & Chung, W. S. (2016). A positive transcription factor in osmotic stress tolerance, ZAT10, is regulated by MAP kinases in Arabidopsis. Journal of Plant Biology, 59, 55-61. https://doi.org/10.1007/s12374-016-0442-4
Piasecka, A., Jedrzejczak‐Rey, N., & Bednarek, P. (2015). Secondary metabolites in plant innate immunity: conserved function of divergent chemicals. New Phytologist, 206(3), 948-964. https://doi.org/10.1111/nph.13325
Pruitt, R. N., Gust, A. A., & Nürnberger, T. (2021). Plant immunity unified. Nature Plants, 7(4), 382-383. https://doi.org/10.1038/s41477-021-00903-3
Ramos, R. N., Zhang, N., Lauff, D. B., Valenzuela-Riffo, F., Figueroa, C. R., Martin, G. B., Pombo, M. A., & Rosli, H. G. (2023). Loss-of-function mutations in WRKY22 and WRKY25 impair stomatal-mediated immunity and PTI and ETI responses against Pseudomonas syringae pv. tomato. Plant Molecular Biology, 112(3), 161-177. https://doi.org/10.1007/s11103-023-01358-0
Sakuma, Y., Maruyama, K., Osakabe, Y., Qin, F., Seki, M., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2006). Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. The Plant Cell, 18(5), 1292-1309. https://doi.org/10.1105/tpc.105.035881
Somssich, I. E., Wernert, P., Kiedrowski, S., & Hahlbrock, K. (1996). Arabidopsis thaliana defense-related protein ELI3 is an aromatic alcohol: NADP+ oxidoreductase. Proceedings of the National Academy of Sciences, 93(24), 14199-14203. https://doi.org/10.1073/pnas.93.24.14199
Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., ... & Von Mering, C. (2015). STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Research, 43(D1), D447-D452. https://doi.org/10.1093/nar/gku1003
Takikawa, Y., & Takahashi, F. (2014). Bacterial leaf spot and blight of crucifer plants (Brassicaceae) caused by Pseudomonas syringae pv. maculicola and P. cannabina pv. alisalensis. Journal of General Plant Pathology, 80(6), 466-474. http://dx.doi.org/10.1007/s10327-014-0540-4
Thatcher, L. F., Cevik, V., Grant, M., Zhai, B., Jones, J. D., Manners, J. M., & Kazan, K. (2016) Characterization of a JAZ7 activation-tagged Arabidopsis mutant with increased susceptibility to the fungal pathogen Fusarium oxysporum. Journal of Experimental Botany, 67(8), 2367-2386. https://doi.org/10.1093/jxb/erw040
Umar, O. B., Ranti, L. A., Abdulbaki, A. S., Bola, A. L., Abdulhamid, A. K., Biola, M. R., & Victor, K. O. (2021). Stresses in plants: Biotic and abiotic. Current Trends in Wheat Research, 1-8. https://doi.org/10.5772/intechopen.100501
Xin, X.-F., Kvitko, B., & He, S. Y. (2018). Pseudomonas syringae: what it takes to be a pathogen. Nature Reviews Microbiology, 16(5), 316-328. https://doi.org/10.1038/nrmicro.2018.17
Xu, Y., & Zhu, Z. (2021). PIF4 and PIF4-interacting proteins: at the nexus of plant light, temperature and hormone signal integrations. International Journal of Molecular Sciences, 22(19), 10304. https://doi.org/10.3390/ijms221910304
Yang, J. W., Yu, S. H., & Ryu, C.-M. (2009). Priming of defense-related genes confers root-colonizing bacilli-elicited induced systemic resistance in pepper. The Plant Pathology Journal, 25(4), 389-399. https://doi.org/10.1038/nrmicro.2018.17
Yang, L., Wang, Z., & Hua, J. (2021). A meta-analysis reveals opposite effects of biotic and abiotic stresses on transcript levels of Arabidopsis intracellular immune receptor genes. Frontiers in Plant Science, 12, 625729. https://doi.org/10.3389/fpls.2021.625729
Zaynab, M., Fatima, M., Abbas, S., Sharif, Y., Umair, M., Zafar, M. H., & Bahadar, K. (2018). Role of secondary metabolites in plant defense against pathogens. Microbial Pathogenesis, 124, 198-202. https://doi.org/10.1016/j.micpath.2018.08.034
Zhang, A., Zhang, S., Wang, F., Meng, X., Ma, Y., Guan, J., & Zhang, F. (2023). The roles of microRNAs in horticultural plant disease resistance. Frontiers in Genetics, 14, 1137471. https://doi.org/10.3389/fgene.2023.1137471
Zhang, J., & Zhou, J. M. (2010). Plant immunity triggered by microbial molecular signatures. Molecular Plant, 3(5), 783-793. https://doi.org/10.1093/mp/ssq035
Zhang, T., Meng, L., Kong, W., Yin, Z., Wang, Y., Schneider, J. D., & Chen, S. (2018). Quantitative proteomics reveals a role of JAZ7 in plant defense response to Pseudomonas syringae DC3000. Journal of Proteomics, 175, 114-126. https://doi.org/10.1016/j.jprot.2018.01.002
Zheng, Z., Qamar, S. A., Chen, Z., & Mengiste, T. (2006). Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. The Plant Journal, 48(4), 592-605. https://doi.org/10.1111/j.1365-313x.2006.02901.x
Zipfel, C., & Robatzek, S. (2010). Pathogen-associated molecular pattern-triggered immunity: veni, vidi…? Plant Physiology, 154(2), 551-554.  https://doi.org/10.1104/pp.110.161547