Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2003). Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling.
The Plant Cell, 15(1), 63-78.
https://doi.org/10.1105/tpc.006130
Balan, B., Marra, F. P., Caruso, T., & Martinelli, F. (2018). Transcriptomic responses to biotic stresses in Malus x domestica: a meta-analysis study.
Scientific Reports, 8(1), 1970.
https://doi.org/10.1038/s41598-018-19348-4
Bednarek, P. (2012). Chemical warfare or modulators of defence responses- the function of secondary metabolites in plant immunity.
Current Opinion in Plant Biology, 15(4), 407-414.
https://doi.org/10.1016/j.pbi.2012.03.002
Berger, S., Papadopoulos, M., Schreiber, U., Kaiser, W., & Roitsch, T. (2004). Complex regulation of gene expression, photosynthesis and sugar levels by pathogen infection in tomato.
Physiologia Plantarum, 122(4), 419-428.
https://doi.org/10.1111/j.1399-3054.2004.00433.x
Bernsdorff, F., Döring, A.-C., Gruner, K., Schuck, S., Bräutigam, A., & Zeier, J. (2016). Pipecolic acid orchestrates plant systemic acquired resistance and defense priming via salicylic acid-dependent and-independent pathways.
The Plant Cell, 28(1), 102-129.
https://doi.org/10.1105/tpc.15.00496
Bhargava, A., Clabaugh, I., To, J. P., Maxwell, B. B., Chiang, Y.-H., Schaller, G. E., Loraine, A., & Kieber, J. J. (2013). Identification of cytokinin-responsive genes using microarray meta-analysis and RNA-Seq in Arabidopsis.
Plant Physiology, 162(1), 272-294.
https://doi.org/10.1104/pp.113.217026
Biniaz, Y., Tahmasebi, A., Tahmasebi, A., Albrectsen, B. R., Poczai, P., & Afsharifar, A. (2022). Transcriptome meta-analysis identifies candidate hub genes and pathways of pathogen stress responses in
Arabidopsis thaliana.
Biology, 11(8), 1155.
https://doi.org/10.3390/biology11081155
Boter, M., Ruíz-Rivero, O., Abdeen, A., & Prat, S. (2004). Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis.
Genes and Development, 18(13), 1577-1591.
https://doi.org/10.1101/gad.297704
Casassola, A., Brammer, S. P., Chaves, M. S., Martinelli, J. A., Grando, M. F., & Denardin, N. D. A. (2013). Gene expression: a review on methods for the study of defense-related gene differential expression in plants.
American Journal of Plant Sciences, 4(12), 64-73.
https://doi.org/10.4236/ajps.2013.412a3008
Cheng, M.-C., Liao, P.-M., Kuo, W.-W., & Lin, T.-P. (2013). The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals.
Plant Physiology,
162(3), 1566-1582.
https://doi.org/10.1104/pp.113.221911
Davletova, S., Schlauch, K., Coutu, J., & Mittler, R. (2005). The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis.
Plant Physiology, 139(2), 847-856.
https://doi.org/10.1104/pp.105.068254
Dodds, P. N., & Rathjen, J. P. (2010). Plant immunity: towards an integrated view of plant-pathogen interactions.
Nature Reviews Genetics, 11(8), 539-548.
https://doi.org/10.1038/nrg2812
Du, Z., Zhou, X., Ling, Y., Zhang, Z., & Su, Z. (2010). agriGO: a GO analysis toolkit for the agricultural community.
Nucleic Acids Research, 38(suppl_2), W64-W70.
https://doi.org/10.1093/nar/gkq310
Ewing, B., & Green, P. (1998). Base-calling of automated sequencer traces using phred. II. Error probabilities.
Genome Research, 8(3), 186-194.
https://doi.org/10.1101/gr.8.3.186
Fernández-Bautista, N., Fernández-Calvino, L., Muñoz, A., & Castellano, M. M. (2017). HOP3 a new regulator of the ER stress response in Arabidopsis with possible implications in plant development and response to biotic and abiotic stresses.
Plant Signaling and Behavior, 12(5), e1317421.
https://doi.org/10.1080/15592324.2017.1317421.
Filichkin, S. A., Cumbie, J. S., Dharmawardhana, P., Jaiswal, P., Chang, J. H., Palusa, S. G., Reddy, A., Megraw, M., & Mockler, T. C. (2015). Environmental stresses modulate abundance and timing of alternatively spliced circadian transcripts in Arabidopsis.
Molecular Plant, 8(2), 207-227.
https://doi.org/10.1016/j.molp.2014.10.011
Gangadharan, A., Sreerekha, M.-V., Whitehill, J., Ham, J. H., & Mackey, D. (2013). The
Pseudomonas syringae pv. tomato type III effector HopM1 suppresses Arabidopsis defenses independent of suppressing salicylic acid signaling and of targeting AtMIN7.
PloS one, 8(12), e82032.
https://doi.org/10.1371/journal.pone.0082032
Hakata, M., Muramatsu, M., Nakamura, H., Hara, N., Kishimoto, M., Iida-Okada, K., ... & Ichikawa, H (2017). Overexpression of TIFY genes promotes plant growth in rice through jasmonate signaling.
Bioscience, Biotechnology, and Biochemistry, 81(5), 906-913.
https://doi.org/10.1080/09168451.2016.1274638
Hanif, M., Rahman, M. U., Gao, M., Yang, J., Ahmad, B., Yan, X., & Wang, X. (2018). Heterologous expression of the grapevine JAZ7 gene in Arabidopsis confers enhanced resistance to powdery mildew but not to
Botrytis cinerea.
International Journal of Molecular Sciences, 19(12), 3889.
https://doi.org/10.3390/ijms19123889
Hawker, N. P., & Bowman, J. L. (2004). Roles for class III HD-Zip and KANADI genes in Arabidopsis root development.
Plant Physiology, 135(4), 2261-2270.
https://doi.org/10.1104/pp.104.040196
Howard, B. E., Hu, Q., Babaoglu, A. C., Chandra, M., Borghi, M., Tan, X., He, L., Winter-Sederoff, H., Gassmann, W., & Veronese, P. (2013). High-throughput RNA sequencing of pseudomonas-infected Arabidopsis reveals hidden transcriptome complexity and novel splice variants.
PloS one, 8(10), e74183.
https://doi.org/10.1371/journal.pone.0074183
Hu, Y., Zhong, S., Zhang, M., Liang, Y., Gong, G., Chang, X., Tan, F., Yang, H., Qiu, X., & Luo, L. (2020). Potential role of photosynthesis in the regulation of reactive oxygen species and defence responses to
Blumeria graminis f. sp.
tritici in wheat.
International Journal of Molecular Sciences, 21(16), 5767.
https://doi.org/10.3390/ijms21165767
Jiang, Z., He, F., & Zhang, Z. (2017). Large-scale transcriptome analysis reveals arabidopsis metabolic pathways are frequently influenced by different pathogens.
Plant Molecular Biology, 94, 453-467.
https://doi.org/10.1007/s11103-017-0617-5
Kong, X., Yang, M., Le, B. H., He, W., & Hou, Y. (2022). The master role of siRNAs in plant immunity.
Molecular Plant Pathology, 23(10), 1565-1574.
https://doi.org/10.1111/mpp.v23.10
Lewis, L. A., Polanski, K., de Torres-Zabala, M., Jayaraman, S., Bowden, L., Moore, J., ... & Grant, M. (2015). Transcriptional dynamics driving MAMP-triggered immunity and pathogen effector-mediated immunosuppression in Arabidopsis leaves following infection with
Pseudomonas syringae pv tomato DC3000.
The Plant Cell, 27(11), 3038-3064.
https://doi.org/10.1105/tpc.15.00471
Li, X., Li, X., Li, M., Yan, Y., Liu, X., & Li, L. (2016). Dual function of NAC072 in ABF3-mediated ABA-responsive gene regulation in Arabidopsis.
Frontiers in Plant Science, 7, 1075.
https://doi.org/10.3389/fpls.2016.01075
Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., ... & Foster, G. D. (2012). Top 10 plant pathogenic bacteria in molecular plant pathology.
Molecular Plant Pathology, 13(6), 614-629.
https://doi.org/10.1111/j.1364-3703.2012.00804.x
Misra, B. B., de Armas, E., & Chen, S. (2016). Differential metabolomic responses of PAMP-triggered immunity and effector-triggered immunity in Arabidopsis suspension cells.
Metabolomics, 12, 1-15.
https://doi.org/10.1007/s11306-016-0984-y
Mizoguchi, T., Wheatley, K., Hanzawa, Y., Wright, L., Mizoguchi, M., Song, H.-R., Carré, I. A., & Coupland, G. (2002). LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis.
Developmental Cell, 2(5), 629-641.
https://doi.org/10.1016/s1534-5807(02)00170-3
Nguyen, X. C., Kim, S. H., Hussain, S., An, J., Yoo, Y., Han, H. J., Yoo, J. S., Lim, C. O., Yun, D.-J., & Chung, W. S. (2016). A positive transcription factor in osmotic stress tolerance, ZAT10, is regulated by MAP kinases in Arabidopsis.
Journal of Plant Biology, 59, 55-61.
https://doi.org/10.1007/s12374-016-0442-4
Piasecka, A., Jedrzejczak‐Rey, N., & Bednarek, P. (2015). Secondary metabolites in plant innate immunity: conserved function of divergent chemicals.
New Phytologist, 206(3), 948-964.
https://doi.org/10.1111/nph.13325
Ramos, R. N., Zhang, N., Lauff, D. B., Valenzuela-Riffo, F., Figueroa, C. R., Martin, G. B., Pombo, M. A., & Rosli, H. G. (2023). Loss-of-function mutations in WRKY22 and WRKY25 impair stomatal-mediated immunity and PTI and ETI responses against
Pseudomonas syringae pv. tomato.
Plant Molecular Biology, 112(3), 161-177.
https://doi.org/10.1007/s11103-023-01358-0
Sakuma, Y., Maruyama, K., Osakabe, Y., Qin, F., Seki, M., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2006). Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression.
The Plant Cell, 18(5), 1292-1309.
https://doi.org/10.1105/tpc.105.035881
Somssich, I. E., Wernert, P., Kiedrowski, S., & Hahlbrock, K. (1996).
Arabidopsis thaliana defense-related protein ELI3 is an aromatic alcohol: NADP+ oxidoreductase.
Proceedings of the National Academy of Sciences, 93(24), 14199-14203.
https://doi.org/10.1073/pnas.93.24.14199
Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., ... & Von Mering, C. (2015). STRING v10: protein-protein interaction networks, integrated over the tree of life.
Nucleic Acids Research, 43(D1), D447-D452.
https://doi.org/10.1093/nar/gku1003
Takikawa, Y., & Takahashi, F. (2014). Bacterial leaf spot and blight of crucifer plants (Brassicaceae) caused by
Pseudomonas syringae pv.
maculicola and
P. cannabina pv.
alisalensis.
Journal of General Plant Pathology, 80(6), 466-474.
http://dx.doi.org/10.1007/s10327-014-0540-4
Thatcher, L. F., Cevik, V., Grant, M., Zhai, B., Jones, J. D., Manners, J. M., & Kazan, K. (2016) Characterization of a JAZ7 activation-tagged Arabidopsis mutant with increased susceptibility to the fungal pathogen
Fusarium oxysporum.
Journal of Experimental Botany, 67(8), 2367-2386.
https://doi.org/10.1093/jxb/erw040
Umar, O. B., Ranti, L. A., Abdulbaki, A. S., Bola, A. L., Abdulhamid, A. K., Biola, M. R., & Victor, K. O. (2021). Stresses in plants: Biotic and abiotic.
Current Trends in Wheat Research, 1-8.
https://doi.org/10.5772/intechopen.100501
Xu, Y., & Zhu, Z. (2021). PIF4 and PIF4-interacting proteins: at the nexus of plant light, temperature and hormone signal integrations.
International Journal of Molecular Sciences, 22(19), 10304.
https://doi.org/10.3390/ijms221910304
Yang, J. W., Yu, S. H., & Ryu, C.-M. (2009). Priming of defense-related genes confers root-colonizing bacilli-elicited induced systemic resistance in pepper.
The Plant Pathology Journal, 25(4), 389-399.
https://doi.org/10.1038/nrmicro.2018.17
Yang, L., Wang, Z., & Hua, J. (2021). A meta-analysis reveals opposite effects of biotic and abiotic stresses on transcript levels of Arabidopsis intracellular immune receptor genes.
Frontiers in Plant Science, 12, 625729.
https://doi.org/10.3389/fpls.2021.625729
Zaynab, M., Fatima, M., Abbas, S., Sharif, Y., Umair, M., Zafar, M. H., & Bahadar, K. (2018). Role of secondary metabolites in plant defense against pathogens.
Microbial Pathogenesis, 124, 198-202.
https://doi.org/10.1016/j.micpath.2018.08.034
Zhang, A., Zhang, S., Wang, F., Meng, X., Ma, Y., Guan, J., & Zhang, F. (2023). The roles of microRNAs in horticultural plant disease resistance.
Frontiers in Genetics, 14, 1137471.
https://doi.org/10.3389/fgene.2023.1137471
Zhang, T., Meng, L., Kong, W., Yin, Z., Wang, Y., Schneider, J. D., & Chen, S. (2018). Quantitative proteomics reveals a role of JAZ7 in plant defense response to
Pseudomonas syringae DC3000.
Journal of Proteomics, 175, 114-126.
https://doi.org/10.1016/j.jprot.2018.01.002
Zheng, Z., Qamar, S. A., Chen, Z., & Mengiste, T. (2006). Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens.
The Plant Journal, 48(4), 592-605.
https://doi.org/10.1111/j.1365-313x.2006.02901.x