Abdelmoez, W., Mostafa, N., & Mustafa, A. (2013). Utilization of oleochemical industry residues as substrates for lipase production for enzymatic sunflower oil hydrolysis.
Journal of Cleaner Production,
59, 290-29.
https://doi.org/10.1016/j.jclepro.2013.06.032
Anderson, A. S., & Wellington, E. M. (2001). The taxonomy of
Streptomyces and related genera.
International Journal of Systematic and Evolutionary Microbiology, 51(3), 797-814.
https://doi.org/10.1099/00207713-51-3-797
Arpigny, J. L., & Jaeger, K.E. (1999). Bacterial lipolytic enzymes: classification and properties.
Biochemical Journal,
343(1), 177-183.
https://portlandpress.com/biochemj
Borrelli, G. M., & Trono, D. (2015). Recombinant lipases and phospholipases and their use as biocatalysts for industrial applications.
International Journal of Molecular Sciences,
16(9), 20774-20840.
https://doi.org/10.3390/ijms160920774
Bredholt, H., Fjærvik, E., Johnsen, G., & Zotchev, S. B. (2008). Actinomycetes from sediments in the Trondheim fjord, Norway: diversity and biological activity.
Marine Drugs,
6(1), 12-24.
https://www.mdpi.com/journal/marinedrugs
Carpen, A., Bonomi, F., Iametti, S., & Marengo, M. (2019). Effects of starch addition on the activity and specificity of food-grade lipases.
Biotechnology and Applied Biochemistry, 66(4), 607-616.
https://doi.org/10.1002/bab.1761
Chandra, P., Enespa, Singh, R., & Arora, P. K. (2020). Microbial lipases and their industrial applications: a comprehensive review.
Microbial Cell Factories,
19, 1-42.
https://doi.org/10.1186/s12934-020-01428-8
Colla, L. M., Rizzardi, J., Pinto, M. H., Reinehr, C. O., Bertolin, T. E., & Costa, J. A. V. (2010). Simultaneous production of lipases and biosurfactants by submerged and solid-state bioprocesses.
Bioresource Technology,
101(21), 8308-8314.
https://doi.org/10.1016/j.biortech.2010.05.086
de Souza Vandenberghe, L. P., Karp, S. G., Pagnoncelli, M. G. B., von Linsingen Tavares, M., Junior, N. L., Diestra, K. V., Viesser, J. A., & Soccol, C. R. (2020). Classification of enzymes and catalytic properties. In
Biomass, Biofuels, Biochemicals (pp. 11-30). Elsevier.
http://dx.doi.org/10.1016/B978-0-12-819820-9.00002-8
Dharmsthiti, S., & Kuhasuntisuk, B. (1998). Lipase from
Pseudomonas aeruginosa LP602: biochemical properties and application for wastewater treatment.
Journal of Industrial Microbiology and Biotechnology,
21(1-2), 75-80.
https://doi.org/10.1038/sj.jim.2900563
Farooq, S., Ganai, S. A., Ganai, B. A., Mohan, S., Uqab, B., & Nazir, R. (2022). Molecular characterization of lipase from a psychrotrophic bacterium
Pseudomonas sp. CRBC14.
Current Genetics, 68(2), 243-251..
https://doi.org/10.1007/s00294-021-01224-w
Fatima, S., Faryad, A., Ataa, A., Joyia, F. A., & Parvaiz, A. (2021). Microbial lipase production: A deep insight into the recent advances of lipase production and purification techniques.
Biotechnology and Applied Biochemistry,
68(3), 445-458.
http://dx.doi.org/10.1002/bab.2019
Gupta, R., Gupta, N., & Rathi, P. J. A. M. (2004). Bacterial lipases: an overview of production, purification and biochemical properties.
Applied Microbiology and Biotechnology,
64, 763-781.
https://doi.org/10.1007/s00253-004-1568-8
Gupta, R., Rathi, P., Gupta, N., & Bradoo, S. (2003). Lipase assays for conventional and molecular screening: an overview.
Biotechnology and Applied Biochemistry,
37(1), 63-71.
https://doi.org/10.1042/ba20020059
Hari Krishna, S., & Karanth, N. G. (2002). Lipases and lipase-catalyzed esterification reactions in nonaqueous media.
Catalysis Reviews,
44(4), 499-591.
http://dx.doi.org/10.1081/CR-120015481
Hasan-Beikdashti, M., Forootanfar, H., Safiarian, M. S., Ameri, A., Ghahremani, M. H., Khoshayand, M. R., & Faramarzi, M. A. (2012). Optimization of culture conditions for production of lipase by a newly isolated bacterium
Stenotrophomonas maltophilia.
Journal of the Taiwan Institute of Chemical Engineers,
43(5), 670-677.
https://doi.org/10.1016/j.jtice.2012.03.005
Akoh, C. C., & Xu, X. (2002). Enzymatic production of Betapol and other specialty fats. In Lipid biotechnology (1st ed., pp. 18). CRC.
Ilesanmi, O. I., Adekunle, A. E., Omolaiye, J. A., Olorode, E. M., & Ogunkanmi, A. L. (2020). Isolation, optimization and molecular characterization of lipase producing bacteria from contaminated soil.
Scientific African,
8, e00279.
https://doi.org/10.1016/j.sciaf.2020.e00279
Irshad, G., Naz, F., Ghuffar, S., Khalid, A. R., Arif, S., Maqsood, A., Raja, M. U., & Din, R. U. (2023). Molecular studies of postharvest fungal peach fruit rots:
Fusarium sporotrichioides, Aspergillus niger, Aspergillus flavus, Penicillium chrysogenum, and
Cladosporium pseudocladosporioides.
Pakistan Journal of Phytopathology, 35(2), 349-356.
https://doi.org/10.33866/PHYTOPATHOL.035.02.0910
Jassim, Y. A., & Jarallah, E. M. (2023). Screening for antimicrobial activities and enzymatic activities production of some actinomycetes spp. isolated from different soil samples from Hilla Province.
British Journal of Multidisciplinary and Advanced Studies, 4(4), 17-25.
https://doi.org/10.37745/bjmas.2022.02533
Kirana, S., Arshada, Z., Nosheenb, S., Kamala, S., Gulzara, T., Majeeda, M. S., Jannata, M., & Rafiquec, M. A. (2016). Microbial lipases: production and applications: a review. Journal of Biochemistry, Biotechnology and Biomaterials, 1(2), 7-20.
Kordel, M., Hofmann, B., Schomburg, D., & Schmid, R. D. (1991). Extracellular lipase of
Pseudomonas sp. strain ATCC 21808: purification, characterization, crystallization, and preliminary X-ray diffraction data.
Journal of Bacteriology,
173(15), 4836-4841.
https://doi.org/10.1128/jb.173.15.4836-4841.1991
Lee, D.-W., Koh, Y.-S., Kim, K.-J., Kim, B.-C., Choi, H.-J., Kim, D.-S., Suhartono, M. T., & Pyun, Y.-R. (1999). Isolation and characterization of a thermophilic lipase from
Bacillus thermoleovorans ID-1.
FEMS Microbiology Letters,
179(2), 393-400.
https://doi.org/10.1111/j.1574-6968.1999.tb08754.x
Mahadik, N. D., Puntambekar, U. S., Bastawde, K. B., Khire, J. M., & Gokhale, D. V. (2002). Production of acidic lipase by
Aspergillus niger in solid state fermentation.
Process Biochemistry,
38(5), 715-721.
https://doi.org/10.1016/S0032-9592(02)00194-2
Mohammadi, M., Khaleghi, M., Shakeri, S., Hesni, M. A., Samandari-Bahraseman, M. R., & Dalvand, A. (2022). Isolation of Actinobacteria strains from environmental samples and assessment of their bioactivity.
Avicenna Journal of Clinical Microbiology and Infection,
9(1), 8-15.
http://dx.doi.org/10.34172/ajcmi.2022.03
Narayanan, P. (2007). Environmental pollution: Principles, analysis and control. CBS Publishers & Distributors.
Naveed, M., Nadeem, F., Mehmood, T., Bilal, M., Anwar, Z., & Amjad, F. (2021). Protease-a versatile and eco-friendly biocatalyst with multi-industrial applications: an updated review.
Catalysis Letters,
151, 307-323.
https://link.springer.com/article/10.1007/s10562-020-03316-7
Panyachanakul, T., Lomthong, T., Lorliam, W., Prajanbarn, J., Tokuyama, S., Kitpreechavanich, V., & Krajangsang, S. (2020). New insight into thermo-solvent tolerant lipase produced by Streptomyces sp. A3301 for re-polymerization of poly (DL-lactic acid).
Polymer,
204, 122812.
http://dx.doi.org/10.1016/j.polymer.2020.122812
Patel, G. B., Shah, K. R., Shindhal, T., Rakholiya, P., & Varjani, S. (2021). Process parameter studies by central composite design of response surface methodology for lipase activity of newly obtained Actinomycete.
Environmental Technology and Innovation, 23, 101724.
https://doi.org/10.1016/j.eti.2021.101724
Pencreac'h, G., & Baratti, J. C. (1996). Hydrolysis of p-nitrophenyl palmitate in n-heptane by the
Pseudomonas cepacia lipase: a simple test for the determination of lipase activity in organic media.
Enzyme and Microbial Technology,
18(6), 417-422.
https://doi.org/10.1016/0141-0229(95)00120-4
Sarmah, N., Revathi, D., Sheelu, G., Yamuna Rani, K., Sridhar, S., Mehtab, V., & Sumana, C. (2018). Recent advances on sources and industrial applications of lipases.
Biotechnology Progress,
34(1), 5-28.
https://doi.org/10.1002/btpr.2581
Satari Faghihi, L., Seyedalipour, B., Riazi, G., & Ahmady-Asbchin, S. (2018). Introduction of two halo-alkali-thermo-stable biocatalysts: Purification and characterization.
Catalysis Letters, 148(3), 831-842.
https://doi.org/10.1007/s10562-018-2295-6
Schrag, J. D., Li, Y., Wu, S., & Cygler, M. (1991). Ser-His-Glu triad forms the catalytic site of the lipase from
Geotrichum candidum.
Nature, 351(6329), 761-764.
https://doi.org/10.1038/351761a0
Sharma, R., Chisti, Y., & Banerjee, U. C. (2001). Production, purification, characterization, and applications of lipases.
Biotechnology Advances, 19(8), 627-662.
https://doi.org/10.1016/s0734-9750(01)00086-6
Swarna, D., & Gnanadoss, J. J. (2020). Screening and molecular characterization of actinomycetes from mangrove soil producing industrially important enzymes.
Journal of Scientific Research, 64(2), 87-95.
https://doi.org/10.37398/JSR.2020.640211
Thomson, C. A., Delaquis, P. J., & Mazza, G. (1999). Detection and measurement of microbial lipase activity: a review.
Critical Reviews in Food Science and Nutrition,
39(2), 165-187.
https://doi.org/10.1080/10408399908500492
Tong, X., Busk, P. K., & Lange, L. (2016). Characterization of a new sn‐1, 3‐regioselective triacylglycerol lipase from
Malbranchea cinnamomea.
Biotechnology and Applied Biochemistry, 63(4), 471-478.
https://doi.org/10.1002/bab.1394.