Isolation and Identification of Lipase-producing Actinobacteria from the Lut Desert of Iran

Document Type : Research Article

Authors

1 Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran

2 Department of System Biotechnology, Afzalipour Research Institute (ARI), Shahid Bahonar University of Kerman, Kerman, Iran

Abstract

Lipases are the third category of widely used hydrolytic enzymes that catalyze the hydrolysis of triacylglycerols, glycerol, and free fatty acids. Actinobacteria, which are Gram-positive bacteria, have the largest genome size among bacteria and produce various secondary metabolites, including enzymes. This study aimed to isolate lipase-producing Actinobacteria strains from the Lut Desert in Iran. In this study, microbial samples isolated from the Lut Desert region of Iran in 2017-2018 were cultured on specific Actinobacteria growth media. These samples were activated and cultivated on Tween 80 agar plates for lipase production. After seven days of bacterial growth, the samples were assessed based on the transparent clear zone diameter around the colonies. The lipase activity was measured spectrophotometrically using para-nitrophenyl palmitate as the specific substrate, and the best lipase-producing strain was identified based on its 16S rRNA sequence. Among the six isolated Actinobacteria strains, three strains exhibited lipase production capability. Strain Ga7 had the largest clear zone with a diameter of 7 mm and lipase activity of 5.45×10 -7 µmol/min, making it the most promising potential lipase producer. Based on its 16S rRNA sequence, strain Ga7 belongs to the genus Streptomyces sp., with 99% similarity to Streptomyces indoligenes. This study highlights the significance of using bacteria as a microbial source for lipase production for future industrial and biotechnological applications. Based on the findings of this study, it was determined that the Ga7 strain, due to its bacterial genus and its isolation from the Gandom Beryan area of the Lut Desert as the hottest place on earth, can be a suitable candidate for lipase production in various industries. These findings emphasize the importance of studying microorganisms from extreme environments like the Lut Desert as rich sources for discovering and utilizing industrial enzymes.

Keywords

Main Subjects


Abdelmoez, W., Mostafa, N., & Mustafa, A. (2013). Utilization of oleochemical industry residues as substrates for lipase production for enzymatic sunflower oil hydrolysis. Journal of Cleaner Production, 59, 290-29. https://doi.org/10.1016/j.jclepro.2013.06.032
Anderson, A. S., & Wellington, E. M. (2001). The taxonomy of Streptomyces and related genera. International Journal of Systematic and Evolutionary Microbiology, 51(3), 797-814. https://doi.org/10.1099/00207713-51-3-797
Arpigny, J. L., & Jaeger, K.E. (1999). Bacterial lipolytic enzymes: classification and properties. Biochemical Journal, 343(1), 177-183. https://portlandpress.com/biochemj
Borrelli, G. M., & Trono, D. (2015). Recombinant lipases and phospholipases and their use as biocatalysts for industrial applications. International Journal of Molecular Sciences, 16(9), 20774-20840. https://doi.org/10.3390/ijms160920774
Bredholt, H., Fjærvik, E., Johnsen, G., & Zotchev, S. B. (2008). Actinomycetes from sediments in the Trondheim fjord, Norway: diversity and biological activity. Marine Drugs, 6(1), 12-24. https://www.mdpi.com/journal/marinedrugs
Carpen, A., Bonomi, F., Iametti, S., & Marengo, M. (2019). Effects of starch addition on the activity and specificity of food-grade lipases. Biotechnology and Applied Biochemistry, 66(4), 607-616. https://doi.org/10.1002/bab.1761
Chandra, P., Enespa, Singh, R., & Arora, P. K. (2020). Microbial lipases and their industrial applications: a comprehensive review. Microbial Cell Factories, 19, 1-42. https://doi.org/10.1186/s12934-020-01428-8
Colla, L. M., Rizzardi, J., Pinto, M. H., Reinehr, C. O., Bertolin, T. E., & Costa, J. A. V. (2010). Simultaneous production of lipases and biosurfactants by submerged and solid-state bioprocesses. Bioresource Technology, 101(21), 8308-8314. https://doi.org/10.1016/j.biortech.2010.05.086
de Souza Vandenberghe, L. P., Karp, S. G., Pagnoncelli, M. G. B., von Linsingen Tavares, M., Junior, N. L., Diestra, K. V., Viesser, J. A., & Soccol, C. R. (2020). Classification of enzymes and catalytic properties. In Biomass, Biofuels, Biochemicals (pp. 11-30). Elsevier.  http://dx.doi.org/10.1016/B978-0-12-819820-9.00002-8
Dharmsthiti, S., & Kuhasuntisuk, B. (1998). Lipase from Pseudomonas aeruginosa LP602: biochemical properties and application for wastewater treatment. Journal of Industrial Microbiology and Biotechnology, 21(1-2), 75-80. https://doi.org/10.1038/sj.jim.2900563
Farooq, S., Ganai, S. A., Ganai, B. A., Mohan, S., Uqab, B., & Nazir, R. (2022). Molecular characterization of lipase from a psychrotrophic bacterium Pseudomonas sp. CRBC14. Current Genetics, 68(2), 243-251.. https://doi.org/10.1007/s00294-021-01224-w
Fatima, S., Faryad, A., Ataa, A., Joyia, F. A., & Parvaiz, A. (2021). Microbial lipase production: A deep insight into the recent advances of lipase production and purification techniques. Biotechnology and Applied Biochemistry, 68(3), 445-458. http://dx.doi.org/10.1002/bab.2019
Gupta, R., Gupta, N., & Rathi, P. J. A. M. (2004). Bacterial lipases: an overview of production, purification and biochemical properties. Applied Microbiology and Biotechnology, 64, 763-781. https://doi.org/10.1007/s00253-004-1568-8
Gupta, R., Rathi, P., Gupta, N., & Bradoo, S. (2003). Lipase assays for conventional and molecular screening: an overview. Biotechnology and Applied Biochemistry, 37(1), 63-71. https://doi.org/10.1042/ba20020059
Hari Krishna, S., & Karanth, N. G. (2002). Lipases and lipase-catalyzed esterification reactions in nonaqueous media. Catalysis Reviews, 44(4), 499-591. http://dx.doi.org/10.1081/CR-120015481
Hasan-Beikdashti, M., Forootanfar, H., Safiarian, M. S., Ameri, A., Ghahremani, M. H., Khoshayand, M. R., & Faramarzi, M. A.  (2012). Optimization of culture conditions for production of lipase by a newly isolated bacterium Stenotrophomonas maltophilia. Journal of the Taiwan Institute of Chemical Engineers, 43(5), 670-677. https://doi.org/10.1016/j.jtice.2012.03.005
Hasan, F., Shah, A. A., & Hameed, A. (2006). Industrial applications of microbial lipases. Enzyme and Microbial Technology, 39(2), 235-251. https://doi.org/10.1016/j.enzmictec.2005.10.016
Akoh, C. C., & Xu, X. (2002). Enzymatic production of Betapol and other specialty fats. In Lipid biotechnology (1st ed., pp. 18). CRC.
Ilesanmi, O. I., Adekunle, A. E., Omolaiye, J. A., Olorode, E. M., & Ogunkanmi, A. L. (2020). Isolation, optimization and molecular characterization of lipase producing bacteria from contaminated soil. Scientific African, 8, e00279. https://doi.org/10.1016/j.sciaf.2020.e00279
Irshad, G., Naz, F., Ghuffar, S., Khalid, A. R., Arif, S., Maqsood, A., Raja, M. U., & Din, R. U. (2023). Molecular studies of postharvest fungal peach fruit rots: Fusarium sporotrichioides, Aspergillus niger, Aspergillus flavus, Penicillium chrysogenum, and Cladosporium pseudocladosporioides. Pakistan Journal of Phytopathology, 35(2), 349-356. https://doi.org/10.33866/PHYTOPATHOL.035.02.0910
Jassim, Y. A., & Jarallah, E. M. (2023). Screening for antimicrobial activities and enzymatic activities production of some actinomycetes spp. isolated from different soil samples from Hilla Province. British Journal of Multidisciplinary and Advanced Studies, 4(4), 17-25. https://doi.org/10.37745/bjmas.2022.02533
Joshi, R., & Kuila, A. (2018). Lipase and their different industrial applications: A review. Brazilian Journal of Biological Sciences, 5(10), 237-247. http://dx.doi.org/10.21472/bobs.051004
Kirana, S., Arshada, Z., Nosheenb, S., Kamala, S., Gulzara, T., Majeeda, M. S., Jannata, M., & Rafiquec, M. A. (2016). Microbial lipases: production and applications: a review. Journal of Biochemistry, Biotechnology and Biomaterials, 1(2), 7-20.
Kordel, M., Hofmann, B., Schomburg, D., & Schmid, R. D. (1991). Extracellular lipase of Pseudomonas sp. strain ATCC 21808: purification, characterization, crystallization, and preliminary X-ray diffraction data. Journal of Bacteriology, 173(15), 4836-4841. https://doi.org/10.1128/jb.173.15.4836-4841.1991
Lee, D.-W., Koh, Y.-S., Kim, K.-J., Kim, B.-C., Choi, H.-J., Kim, D.-S., Suhartono, M. T., & Pyun, Y.-R. (1999). Isolation and characterization of a thermophilic lipase from Bacillus thermoleovorans ID-1. FEMS Microbiology Letters, 179(2), 393-400. https://doi.org/10.1111/j.1574-6968.1999.tb08754.x
Mahadik, N. D., Puntambekar, U. S., Bastawde, K. B., Khire, J. M., & Gokhale, D. V. (2002). Production of acidic lipase by Aspergillus niger in solid state fermentation. Process Biochemistry, 38(5), 715-721. https://doi.org/10.1016/S0032-9592(02)00194-2
Mohammadi, M., Khaleghi, M., Shakeri, S., Hesni, M. A., Samandari-Bahraseman, M. R., & Dalvand, A. (2022). Isolation of Actinobacteria strains from environmental samples and assessment of their bioactivity. Avicenna Journal of Clinical Microbiology and Infection, 9(1), 8-15. http://dx.doi.org/10.34172/ajcmi.2022.03
Narayanan, P. (2007). Environmental pollution: Principles, analysis and control. CBS Publishers & Distributors.
Naveed, M., Nadeem, F., Mehmood, T., Bilal, M., Anwar, Z., & Amjad, F. (2021). Protease-a versatile and eco-friendly biocatalyst with multi-industrial applications: an updated review. Catalysis Letters, 151, 307-323. https://link.springer.com/article/10.1007/s10562-020-03316-7
Panyachanakul, T., Lomthong, T., Lorliam, W., Prajanbarn, J., Tokuyama, S., Kitpreechavanich, V., & Krajangsang, S. (2020). New insight into thermo-solvent tolerant lipase produced by Streptomyces sp. A3301 for re-polymerization of poly (DL-lactic acid). Polymer, 204, 122812. http://dx.doi.org/10.1016/j.polymer.2020.122812
Patel, G. B., Shah, K. R., Shindhal, T., Rakholiya, P., & Varjani, S. (2021). Process parameter studies by central composite design of response surface methodology for lipase activity of newly obtained Actinomycete. Environmental Technology and Innovation, 23, 101724. https://doi.org/10.1016/j.eti.2021.101724
Pencreac'h, G., & Baratti, J. C. (1996). Hydrolysis of p-nitrophenyl palmitate in n-heptane by the Pseudomonas cepacia lipase: a simple test for the determination of lipase activity in organic media. Enzyme and Microbial Technology, 18(6), 417-422. https://doi.org/10.1016/0141-0229(95)00120-4
Ray, A. (2012). Application of lipase in industry. Asian Journal of Pharmacy and Technology, 2(2), 33-37.  https://doi.org/10.5958/2231–5713
Robinson, P. K. (2015). Enzymes: principles and biotechnological applications. Essays in Biochemistry, 59, 1- 14. https://doi.org/10.1042/bse0590001
Sarmah, N., Revathi, D., Sheelu, G., Yamuna Rani, K., Sridhar, S., Mehtab, V., & Sumana, C. (2018). Recent advances on sources and industrial applications of lipases. Biotechnology Progress, 34(1), 5-28. https://doi.org/10.1002/btpr.2581
Satari Faghihi, L., Seyedalipour, B., Riazi, G., & Ahmady-Asbchin, S. (2018). Introduction of two halo-alkali-thermo-stable biocatalysts: Purification and characterization. Catalysis Letters, 148(3), 831-842. https://doi.org/10.1007/s10562-018-2295-6
Schrag, J. D., Li, Y., Wu, S., & Cygler, M. (1991). Ser-His-Glu triad forms the catalytic site of the lipase from Geotrichum candidum. Nature, 351(6329), 761-764. https://doi.org/10.1038/351761a0
Sharma, R., Chisti, Y., & Banerjee, U. C. (2001). Production, purification, characterization, and applications of lipases. Biotechnology Advances, 19(8), 627-662. https://doi.org/10.1016/s0734-9750(01)00086-6
Singh, L. S., Baruah, I., & Bora, T. C. (2006). Actinomycetes of Loktak habitat: isolation and screening for antimicrobial activities. Biotechnology, 5(2), 217-221. https://doi.org/10.3923/biotech.2006.217.221
Swarna, D., & Gnanadoss, J. J. (2020). Screening and molecular characterization of actinomycetes from mangrove soil producing industrially important enzymes. Journal of Scientific Research, 64(2), 87-95. https://doi.org/10.37398/JSR.2020.640211
Thomson, C. A., Delaquis, P. J., & Mazza, G. (1999). Detection and measurement of microbial lipase activity: a review. Critical Reviews in Food Science and Nutrition, 39(2), 165-187. https://doi.org/10.1080/10408399908500492
Tong, X., Busk, P. K., & Lange, L. (2016). Characterization of a new sn‐1, 3‐regioselective triacylglycerol lipase from Malbranchea cinnamomea. Biotechnology and Applied Biochemistry, 63(4), 471-478. https://doi.org/10.1002/bab.1394.