Association Between GSK3β Gene Polymorphisms (rs334558 and rs3755557) with Schizophrenia Risk

Document Type : Research Article

Authors

1 Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran

2 Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran,

3 Department of Clinical Psychology, Faculty of Psychology and Social Sciences, Islamic Azad University of Rodehen Branch, Tehran, Iran

4 Center for Research of Molecular Medicine, Hormozgan University of Medical Sciences, Bandar-Abbas, Iran

Abstract

Numerous studies have recognized GSK3ß as a gene associated with susceptibility to schizophrenia (SZ), highlighting its essential function in neurodevelopment and its potential as a target for antipsychotic medications. In this study, we examined the connection between two polymorphisms of the GSK3ß gene, rs334558 and rs3755557, and their potential link to the risk of schizophrenia. We performed a case-control analysis to investigate this relationship within a population from southern Iran. DNA samples were isolated from 100 cases with schizophrenia and 100 normal controls. Then, we used a polymerase chain reaction (PCR) followed by the restriction fragment length polymorphism method (PCR-RFLP) to examine the GSK3ß SNPs (rs334558 and rs3755557) patterns. The frequency of genotypes, alleles, and the Hardy-Weinberg equilibrium were evaluated. Research has shown that individuals with the TA genotype and those with the combined TA+AA genotype at the rs3755557 (T/A) locus have a significantly higher risk of developing schizophrenia (OR= 2.94; 95% CI: 1.54-5.61, P= 0.0001) and (OR= 3.78; 95% CI: 2-7.13, P< 0.0001), respectively. Similarly, the GA genotype and the combination of GA+AA genotypes at the rs334558 (G/A) locus also notably increase the risk of schizophrenia, (OR= 6.62; 95% CI: 3.4-13; P< 0.001) and OR = 7.63; 95%CI: 3.95-14.7; P< 0.001), respectively. In this investigation, our findings have elucidated a substantial correlation between polymorphisms in the GSK3ß gene and the susceptibility to schizophrenia. The analysis indicated that variations in genotype frequencies between the control and the patient group could serve as a diagnostic criterion for schizophrenia. It is recommended that subsequent research involving larger sample sizes across diverse genetic populations be conducted to corroborate the current findings.

Keywords

Main Subjects


Ambrozová, L., Zeman, T., Janout, V., Janoutová, J., Lochman, J.Šerý, O. (2023). Association between polymorphism rs2421943 of the insulin-degrading enzyme and schizophrenia: Preliminary report. Journal of Clinical Laboratory Analysis, 37, e24949.  https://doi.org/10.1002/jcla.24949
Brannock, C.L., White, J.Baker, J.A. (2020). Reducing opioid bias is necessary (ROBIN): an educational program to reduce addiction stigma. Journal of Addictions Nursing, 31, 2-8.  https://doi.org/10.1097/jan.0000000000000319
Chen, Y., Hua, S., Wang, W., Fan, W., Tang, W., Zhang, Y.Zhang, C. (2020). A comprehensive analysis of GSK3B variation for schizophrenia in Han Chinese individuals. Asian Journal of Psychiatry, 47, 101832.  https://doi.org/10.1016/j.ajp.2019.10.012
Chen, Z., Li, X., Cui, X., Zhang, L., Liu, Q., Lu, Y., Wang, X., Shi, H., Ding, M.Yang, Y. (2023). Association of CTNND2 gene polymorphism with schizophrenia: two-sample case-control study in Chinese Han population. The International Journal of Psychiatry in Medicine, 58, 433-448. https://doi.org/10.1177/00912174231164669
Costantini, M., Salone, A., Martinotti, G., Fiori, F., Fotia, F., Di Giannantonio, M.Ferri, F. (2020). Body representations and basic symptoms in schizophrenia. Schizophrenia Research, 222, 267-273.  https://doi.org/10.1016/j.schres.2020.05.038
Del’Guidice, T., Latapy, C., Rampino, A., Khlghatyan, J., Lemasson, M., Gelao, B., ... & Beaulieu, J. M. (2015). FXR1P is a GSK3β substrate regulating mood and emotion processing. Proceedings of the National Academy of Sciences of the United States of America, 112, E4610-9.  https://doi.org/10.1073/pnas.1506491112
Devlin, B., Kelsoe, J. R., Sklar, P., Daly, M. J., O'Donovan, M. C., Craddock, N., ... & Breen, G. (2015). Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways. Nature Neuroscience, 18(2), 199-209. https://doi.org/10.1038/nn.3922
Emamian, E.S., Hall, D., Birnbaum, M.J., Karayiorgou, M.Gogos, J.A. (2004). Convergent evidence for impaired AKT1-GSK3beta signaling in schizophrenia. Nature Genetics, 36, 131-7. https://doi.org/10.1038/ng1296
Hur, E.M.Zhou, F.Q.(2010). GSK3 signalling in neural development. Nature Reviews Neuroscience, 11, 539-51.  https://doi.org/10.1038/nrn2870
Kaidanovich-Beilin, O.Woodgett, J.R. (2011). GSK-3: functional insights from cell biology and animal models. Front Mol Neurosci, 4, 40.  https://doi.org/10.3389/fnmol.2011.00040
Keshri, N., Nandeesha, H., Rajappa, M.Menon, V. (2022). relationship between neural cell adhesion molecule-1 and cognitive functioning in schizophrenia spectrum disorder. Indian Journal of Clinical Biochemistr, 37, 494-498.  https://doi.org/10.1007/s12291-020-00937-y
Kharawala, S., Hastedt, C., Podhorna, J., Shukla, H., Kappelhoff, B.Harvey, P.D. (2022). The relationship between cognition and functioning in schizophrenia: a semi-systematic review. Schizophrenia Research. Cognition, 27, 100217.  https://doi.org/10.1016/j.scog.2021.100217
Kwok, J.B., Hallupp, M., Loy, C.T., Chan, D.K., Woo, J., Mellick, G.D., Buchanan, D.D., Silburn, P.A., Halliday, G.M.Schofield, P.R. (2005). GSK3B polymorphisms alter transcription and splicing in Parkinson's disease. Annals of Neurology, 58, 829-39.  https://doi.org/10.1002/ana.20691
Latapy, C., Rioux, V., Guitton, M.J.Beaulieu, J.M. (2012). Selective deletion of forebrain glycogen synthase kinase 3β reveals a central role in serotonin-sensitive anxiety and social behaviour. Philosophical Transactions of the Royal Society of London, 367, 2460-74.  https://doi.org/10.1098/rstb.2012.0094
Lau, K.F., Miller, C.C., Anderton, B.H.Shaw, P.C. (1999). Molecular cloning and characterization of the human glycogen synthase kinase-3beta promoter. Genomics, 60, 121-8.  https://doi.org/10.1006/geno.1999.5875
Li, M., Mo, Y., Luo, X. J., Xiao, X., Shi, L., Peng, Y. M., ... & Su, B. (2011). Genetic association and identification of a functional SNP at GSK3β for schizophrenia susceptibility. Schizophrenia Research, 133, 165-71.  https://doi.org/10.1016/j.schres.2011.09.013
Matsunaga, S., Kishi, T., Annas, P., Basun, H., Hampel, H.Iwata, N. (2015). Lithium as a treatment for Alzheimer's disease: a systematic review and meta-analysis. Journal of Alzheimer's Disease, 48, 403-10.  https://doi.org/10.3233/jad-150437
Meng, J., Shi, Y., Zhao, X., Zhou, J., Zheng, Y., Tang, R., ... & He, L. (2008). No significant association between the genetic polymorphisms in the GSK-3 beta gene and schizophrenia in the Chinese population. Journal of Psychiatric Research, 42, 365-70.  https://doi.org/10.1016/j.jpsychires.2007.01.005
Mizuki, Y., Sakamoto, S., Okahisa, Y., Yada, Y., Hashimoto, N., Takaki, M.Yamada, N. (2021). Mechanisms underlying the comorbidity of Schizophrenia and Type 2 Diabetes Mellitus. The International Journal of Neuropsychopharmacology, 24, 367-382.  https://doi.org/10.1093/ijnp/pyaa097
Moradkhani, A., Turki Jalil, A., Mahmood Saleh, M., Vanaki, E., Daghagh, H., Daghighazar, B., Akbarpour, Z.Ghahramani Almanghadim, H. (2023). Correlation of rs35753505 polymorphism in Neuregulin 1 gene with psychopathology and intelligence of people with schizophrenia. Gene, 867, 147285. https://doi.org/10.1016/j.gene.2023.147285
Mould, A.W., Hall, N.A., Milosevic, I.Tunbridge, E.M. (2021). Targeting synaptic plasticity in schizophrenia: insights from genomic studies. Trends in Molecular Medicine, 27, 1022-1032.  https://doi.org/10.1016/j.molmed.2021.07.014
Nia, M.H., Shahroudi, M.J., Saravani, R., Sargazi, S., Moudi, M.Mojahed, A. (2021). Relationship between P2XR4 gene variants and the risk of Schizophrenia in South-East of Iran: a preliminary case-control study and in silico analysis. Iranian Journal of Public Health, 50, 978-989.  https://doi.org/10.18502/ijph.v50i5.6115
Paccalet, T., Gilbert, E., Berthelot, N., Marquet, P., Jomphe, V., Lussier, D., Bouchard, R.-H., Cliche, D., Gingras, N.Maziade, M. (2016). Liability indicators aggregate many years before transition to illness in offspring descending from kindreds affected by schizophrenia or bipolar disorder. Schizophrenia Research, 175, 186-192. https://doi.org/10.1016/j.schres.2016.04.038
Pan, B., Chen, J., Lian, J., Huang, X.F.Deng, C. (2015). Unique effects of acute Aripiprazole treatment on the Dopamine D2 receptor downstream cAMP-PKA and Akt-GSK3β signalling pathways in rats. PloS One, 10, e0132722.  https://doi.org/10.1371/journal.pone.0132722
Rampino, A., Torretta, S., Gelao, B., Veneziani, F., Iacoviello, M., Marakhovskaya, A., ... & Blasi, G. (2021). Evidence of an interaction between FXR1 and GSK3β polymorphisms on levels of Negative Symptoms of Schizophrenia and their response to antipsychotics. European Psychiatrists, 64, e39.  https://doi.org/10.1192/j.eurpsy.2021.26
Ripke, S., O'dushlaine, C., Chambert, K., Moran, J.L., Kähler, A.K., Akterin, S., Bergen, S.E., Collins, A.L., Crowley, J.J.Fromer, M., … & Sullivan, P.F. (2013). Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nature Genetics, 45, 1150-1159. https://doi.org/10.1038/ng.2742
Rippin, I., and Eldar-Finkelman, H. (2021). Mechanisms and therapeutic implications of GSK-3 in treating neurodegeneration. Cells 10:262. https://doi.org/10.3390/cells10020262
Sargazi, S., Mirani Sargazi, F., Heidari Nia, M., Sheervalilou, R., Saravani, R., Mirinejad, S.Shakiba, M. (2022). Functional variants of miR-143 are associated with Schizophrenia susceptibility: a preliminary population-based study and bioinformatics analysis. Biochemical Genetics, 60, 868-881.  https://doi.org/10.1007/s10528-021-10133-z
Saus, E., Soria, V., Escaramís, G., Crespo, J. M., Valero, J., Gutiérrez‐Zotes, A., ... & Urretavizcaya, M. )2010). A haplotype of glycogen synthase kinase 3β is associated with early onset of unipolar major depression. Genes, Brain and Behavior, 9, 799-807. https://doi.org/10.1111/j.1601-183X.2010.00617.x
Steen, R.G., Mull, C., Mcclure, R., Hamer, R.M.Lieberman, J.A. (2006). Brain volume in first-episode schizophrenia: systematic review and meta-analysis of magnetic resonance imaging studies. The British Journal of Psychiatry, 188, 510-518. https://doi.org/10.1192/bjp.188.6.510
Szczepankiewicz, A., Skibinska, M., Hauser, J., Slopien, A., Leszczynska-Rodziewicz, A., Kapelski, P., Dmitrzak-Weglarz, M., Czerski, P.M.Rybakowski, J.K. (2006). Association analysis of the GSK-3beta T-50C gene polymorphism with schizophrenia and bipolar disorder. Neuropsychobiology, 53, 51-56. https://doi.org/10.1159/000090704
Tang, H., Shen, N., Jin, H., Liu, D., Miao, X.Zhu, L.Q. (2013). GSK-3β polymorphism discriminates bipolar disorder and schizophrenia: a systematic meta-analysis. Molecular Neurobiology, 48, 404-411. https://doi.org/10.1007/s12035-013-8414-x
Terao, T., Ishii, N.Hirakawa, H. (2020). A specific group of patients with diagnostic conversion from depression to bipolar disorder and finally to dementia as a mental GSK-3 disease: a hypothesis. Bipolar Disorders, 22, 356-359. https://doi.org/10.1111/bdi.12875
Trubetskoy, V., Pardiñas, A. F., Qi, T., Panagiotaropoulou, G., Awasthi, S., Bigdeli, T. B., ... & Lazzeroni, L. C. (2022). Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature, 604, 502-508. https://doi.org/10.1038/s41586-022-04434-5
Tsai, S.J., Liou, Y.J., Hong, C.J., Yu, Y.W.Chen, T.J. (2008). Glycogen synthase kinase-3beta gene is associated with antidepressant treatment response in Chinese major depressive disorder. The Pharmacogenomics Journal, 8, 384-390. https://doi.org/10.1038/sj.tpj.6500486
Van De Leemput, J., Hess, J.L., Glatt, S.J.Tsuang, M.T. (2016). Genetics of Schizophrenia: historical insights and prevailing evidence. Advances in Genetics, 96, 99-141. https://doi.org/10.1016/bs.adgen.2016.08.001
Wexler, E.M.Geschwind, D.H. (2011). DISC1: a schizophrenia gene with multiple personalities. Neuron, 72, 501-503. https://doi.org/10.1016/j.neuron.2011.10.023
Xu, Z., Wen, C., Huang, Y., Yuan, Q., Zhang, X., Lin, D., Liu, L.Wang, W. (2023). Effects of glycogen synthase kinase-3 beta gene polymorphisms on the plasma concentration of Aripiprazole in Chinese patients with schizophrenia: a preliminary study. Journal of Molecular Neuroscience, 73, 76-83. https://doi.org/10.1007/s12031-022-02079-7
Yang, J., Ke, S., Qiao, Z., Yang, X., Qiu, X., Song, X., ... & Cao, D. )2020). Interactions between glycogen synthase kinase-3β gene polymorphisms, negative life events, and susceptibility to major depressive disorder in a Chinese population. Frontiers in Psychiatry, 11, 503477. https://doi.org/10.3389/fpsyt.2020.503477