Assessment of the Diversity of Tomato (Solanum Lycopersicum L.) Accessions in the Nigeria National Gene Bank Using Simple Sequence Repeat (SSR) Markers

Document Type : Research Article

Authors

Biotechnology Department, National Centre for Genetic Resources and Biotechnology, P. M. B. 5382 Moor Plantation, Ibadan, Nigeria

10.22080/jgr.2024.27765.1402

Abstract

Tomato is one of the most cultivated vegetable crops worldwide, with a global production of over one hundred and thirty million tons. Its multi-purpose uses range from being consumed in various forms, including salads, pastes, sauces, and soups, to its culinary and antioxidant properties. Assessment of variability among genetic materials is essential for maintaining and utilizing genetic resources. A fundamental requirement for the effective use of these genetic materials in breeding and crop improvement is a thorough analysis of the genetic variability and structure of the accessions. This study aims to assess the genetic diversity of tomato accessions in the Nigeria gene bank using Simple Sequence Repeat (SSR) markers. DNA was extracted from fifty tomato accessions using the CTAB protocol. The DNA was quantified using a Nanodrop Spectrophotometer and quality-checked on 1%w/v agarose. High-quality DNA was then used for amplification with five polymorphic SSR markers. The total number of alleles was 23, with a mean of 3.20. The polymorphic information content (PIC) values ranged from 0.35 (ODT4) to 0.50 (ODT1), with a mean value of 0.43, while the gene diversity ranged from 0.45 to 0.57, with a mean value of 0.51. The cluster analysis based on the Unweighted Pair-Group Method using Arithmetic Means (UPGMA) grouped the accessions into two major clusters, each with two subclusters. The first major cluster comprised two subclusters of three and thirty tomato accessions, respectively, while the second major cluster had one and sixteen tomato accessions in its subclusters. The results showed that SSR markers were successfully used to discriminate among the tomato accessions based on the PIC and genetic diversity values, hence promoting their use for future crop improvement and contributing to food security.

Keywords

Main Subjects


Al-Shammari, A. M. A., Hamdi, G. J., Al-Mahdawi, M. A. S., & Mohammed, N. K. (2021). Genetic diversity analysis and DNA fingerprinting of tomato breeding lines using SSR markers. Journal of Agricultural Science, 1-7. https://doi.org/10.15159/jas.21.13
Al Shaye, N., Migdadi, H., Charbaji, A., Alsayegh, S., Daoud, S., Wala, A. A., & Alghamdi, S. (2018). Genetic variation among Saudi tomato (Solanum lycopersicum L.) landraces studied using SDS-PAGE and SRAP markers. Saudi Journal of Biological Sciences, 25(6), 1007-1015. https://doi.org/10.1016/j.sjbs.2018.04.014
Athinodorou, F., Foukas, P., Tsaniklidis, G., Kotsiras, A., Chrysargyris, A., Delis, C., ... & Nikoloudakis, N. (2021). Morphological diversity, genetic characterization, and phytochemical assessment of the Cypriot tomato germplasm. Plants, 10(8), 1698. https://doi.org/10.3390/plants10081698
Bhandari, H. R., Bhanu, A. N., Srivastava, K., Singh, M. N., & Shreya, H. A. (2017). Assessment of genetic diversity in crop plants - An Overview. Advances in Plants and Agriculture Research, 7(3), 279-286. https://doi.org/10.15406/apar.2017.07.00255
Bredemeijer, G., Cooke, R., Ganal, M., Peeters, R., Isaac, P., Noordijk, Y., ... & Vosman, B. (2002). Construction and testing of a microsatellite database containing more than 500 tomato variet- ies. Theoretical and Applied Genetics, 105, 1019 -1026 https://doi.org/10.1007/s00122-002-1038-6
Frary, A., Xu, Y., Liu, J., Mitchell, S., Tedeschi, E., & Tanksley, S. (2005). Development of a set of PCR-based anchor markers encompassing the tomato genome and evaluation of their usefulness for genetics and breeding experiments. Theoretical and Applied Genetics, 111(2), 291-312 https://doi.org/10.1007/s00122-005-2023-7
He, C., Poysa, V., & Yu, K. (2003). Development and characterization of simple sequence repeat (SSR) markers and their use in determining relationships among Lycopersicon esculentum cultivars. Theoretical and Applied Genetics, 106, 363- 373. https://doi.org/10.1007/s00122-002-1076-0
Henareh, M., Dursun, A., Mandoulakani, B. A., & Haliloglu, K. (2016). Assessment of genetic diversity in tomato landraces using ISSR markers. Genetika, 48 (1), 25-35 https://doi.org/10.2298/gensr1601025h
Hussain, I., Aslam-Khan, S., Ali, A., Farid, A., Ali, N., Ali, S. A. R. D. A. R., ... & Raza, H. (2018). Genetic diversity among tomato accessions based on agro-morphological traits. Sains Malaysiana, 47(11), 2637- 2645. https://doi.org/10.17576/jsm-2018-4711-06
Khan, R. T., Abbas, S. R., Gerdezi, S. D. A., Javed, G., & Mehmood, A. (2020). Assessment of genetic diversity of tomato genotypes by using molecular markers. Pure and Applied Biology, 9(2), 1532-1540 https://doi.org/10.19045/bspab.2020.90160
Kulus, D. (2018). Genetic resources and selected conservation methods of tomato. Journal of Applied Botany and Food Quality, 91, 135-144. https://doi.org/10.5073/jabfq.2018.091.019
Lui, K. (2005) PowerMarker: Integrated analysis environment for genetic marker Data. Bioinformatics, 21, 2128-2129. http://dx.doi.org/10.1093/bioinformatics/bti282
Mata-Nicolás, E., Montero-Pau, J., Gimeno-Paez, E., Garcia-Carpintero, V., Ziarsolo, P., Menda, N., ... & Díez, M. J (2020). Exploiting the diversity of tomato: the development of a phenotypically and genetically detailed germplasm collection. Horticulture Research, 7, 66 https://doi.org/10.1038/s41438-020-0291-7
Mungai, G. W., Owino, W., Ambuko, J., Giovannoni, J. J., Nyende, A. B., & Michuki, G. (2018). Genetic diversity within African tomato using next generation sequencing. Plant Genetic Resources, 169 (4), 296- 305. https://doi.org/10.1017/S1479262117000314
Oduoye, O. T., Oluwasanya, O. A., Arikawe, O. O., Sunday, A., Ayekun, O. A., Oyenpemi, O. S., ... & Okechukwu, E. C. (2020). Genetic variation via SSR polymorphic information content and ecological distributions of Nigerian sesame. African Journal of Biotechnology, 19(4), 165-170. http://dx.doi.org/10.5897/AJB2019.16980
Okumuş, A., & Dağidir, Ş. (2021). Assessment of genetic diversity on tomato (Lycopersicon esculentum Mill.) landraces using SSR molecular markers in Turkey. Frontiers in Life Sciences and Related Technologies, 2(2), 51- 59. https://doi.org/10.51753/flsrt.957055
Pakhtunkhwa, K. (2018). Genetic diversity among tomato accessions based on agro-morphological traits. Sains Malaysiana 47(11), 2637- 2645. http://dx.doi.org/10.17576/jsm-2018-4711-06
Pidigam, S., Thuraga, V., Munnam, S. B., Amarapalli, G., Kuraba, G., Pandravada, S. R., ... & Sudini, H. K. (2021). Genetic diversity, population structure and validation of SSR markers linked to Sw-5 and I-2 genes in tomato germplasm. Physiology and Molecular Biology of Plants, 27(8), 1695- 1710. https://doi.org/10.1007/s12298-021-01037-8
Pozharskiy, A., Kostyukova, V., Khusnitdinova, M., Adilbayeva, K., Nizamdinova, G., Kapytina, A., ... & Gritsenko, D. (2023). Genetic diversity of the breeding collection of tomato varieties in Kazakhstan assessed using SSR, SCAR and CAPS markers. PeerJ, 11, e15683. https://doi.org/10.7717/peerj.15683
Sifau, M. O., Oduoye, O. T., Oluwasanya, O.A., & Aladele, S. E.  (2017). Assessment of genetic variability in Sorghum accessions (Sorghum bicolor L. Moench) at the national centre for genetic resources and biotechnology, Ibadan, Nigeria. Journal of Applied Science and Environmental Management, 21 (6), 1143- 1147. http://dx.doi.org/10.4314/jasem.v21i6.25
Smulders, M. J. M., Bredemeijer, G., Rus-Kortekaas, W., Arens, P., & Vosman, B. (1997). Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theoretical and Applied Genetics, 94, 264-272 https://doi.org/10.1007/s001220050409
Tam, S. M., Mhiri, C., Vogelaar, A., Kerkveld, M., Pearce, S. R., & Grandbastien, M. A. (2005). Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR. Theoretical and Applied Genetics, 110(5), 819-31 https://doi.org/10.1007/s00122-004-1837-z
Todorovska, E., Ivanova, A., Ganeva, D., Pevicharova, G., Molle, E., Bojinov, B., ... & Danailov, Z. (2014). Assessment of genetic variation in Bulgarian tomato (Solanum lycopersicum L.) genotypes, using fluorescent SSR genotyping platform. Biotechnology and Biotechnological Equipment, 28(1), 68- 76. http://dx.doi.org/10.1080/13102818.2014.901683
Wang, T., Zou, Q. D., Qi, S. Y., Wang, X. F., Wu, Y. Y., Liu, N., ... & Li, H. T. (2016). Analysis of genetic diversity and population structure in a tomato (Solanum lycopersicum L.) germplasm collection based on single nucleotide polymorphism markers. Genetics and Molecular Research, 15(3), 1-12. https://doi.org/10.4238/gmr.15038209
Zane, L., Bargelloni, L., & Patarnello, T. (2002). Strategies for microsatellite isolation: A review. Molecular Ecology, 11(1), 1-16 https://doi.org/10.1046/j.0962-1083.2001.01418.x
Zhou, R., Wu, Z., Cao, X., & Jiang, F. L. (2015). Genetic diversity of cultivated and wild tomatoes revealed by morphological traits and SSR markers. Genetics and Molecular Research, 14(4), 13868- 13879. https://doi.org/10.4238/2015.october.29.7