Aasfar, A., Meftah Kadmiri, I., Azaroual, S. E., Lemriss, S., Mernissi, N. E., Bargaz, A., ... & Hilali, A. (2024). Agronomic advantage of bacterial biological nitrogen fixation on wheat plant growth under contrasting nitrogen and phosphorus regimes.
Frontiers in Plant Science, 15, 1388775.
https://doi.org/10.3389/fpls.2024.1388775
Andriankaja, A., Boisson-Dernier, A., Frances, L., Sauviac, L., Jauneau, A., Barker, D. G., & de Carvalho-Niebel, F. (2007). AP2-ERF transcription factors mediate Nod factor-dependent Mt ENOD11 activation in root hairs via a novel cis-regulatory motif.
The Plant Cell, 19(9), 2866-2885.
https://doi.org/10.1105tpc.107.052944
Bailey, T. L., & Elkan, C. (1994). Fitting a mixture model by expectation maximization to discover motifs in bipolymers. Proceedings - International Conference on Intelligent Systems for Molecular Biology, 2, 28-36.
Bauer, P., Ratet, P., Crespi, M. D., Schultze, M., & Kondorosi, A. (1996). Nod factors and cytokinins induce similar cortical cell division, amyloplast deposition and MsEnod12A expression patterns in alfalfa roots.
The Plant Journal, 10(1), 91-105.
https://doi.org/10.1104/pp.116.1.53
Cerri, M. R., Frances, L., Kelner, A., Fournier, J., Middleton, P. H., Auriac, M. C., ... & de Carvalho-Niebel, F. (2016). The symbiosis-related ERN transcription factors act in concert to coordinate rhizobial host root infection.
Plant Physiology, 171(2), 1037-1054.
https://doi.org/10.1104/pp.16.00230
Chakraborty, S., Valdés-López, O., Stonoha-Arther, C., & Ané, J. M. (2022). Transcription factors controlling the rhizobium-legume symbiosis: integrating infection, organogenesis and the abiotic environment.
Plant and Cell Physiology, 63(10), 1326-1343.
https://doi.org/10.1093/pcp/pcac063
Charpentier, M., Sun, J., Martins, T. V., Radhakrishnan, G. V., Findlay, K., Soumpourou, E., ... & Oldroyd, G. E. (2016). Nuclear-localized cyclic nucleotide-gated channels mediate symbiotic calcium oscillations.
Science, 352(6289), 1102-1105.
https://doi.org/10.1126/science.aae0109
Chaulagain, D., & Frugoli, J. (2021). The regulation of nodule number in legumes is a balance of three signal transduction pathways.
International Journal of Molecular Sciences, 22(3), 1117.
https://doi.org/10.3390/ijms22031117
Endre, G., Kereszt, A., Kevei, Z., Mihacea, S., Kaló, P., & Kiss, G. B. (2002). A receptor kinase gene regulating symbiotic nodule development.
Nature, 417(6892), 962-966.
https://doi.org/10.1038/nature00842
Ferguson, B. J., Indrasumunar, A., Hayashi, S., Lin, M. H., Lin, Y. H., Reid, D. E., & Gresshoff, P. M. (2010). Molecular analysis of legume nodule development and autoregulation.
Journal of Integrative Plant Biology, 52(1), 61-76.
https://doi.org/10.1111/j.1744-7909.2010.00899.x
Garrocho-Villegas, V., Gopalasubramaniam, S. K., & Arredondo-Peter, R. (2007). Plant hemoglobins: what we know six decades after their discovery.
Gene, 398(1-2), 78-85.
https://doi.org/10.1016/j.gene.2007.01.035
Goodstein, D. M., Shu, S., Howson, R., Neupane, R., Hayes, R. D., Fazo, J., ... & Rokhsar, D. S. (2012). Phytozome: a comparative platform for green plant genomics.
Nucleic Acids Research, 40(D1), D1178-D1186.
https://doi.org/10.1093/nar/gkr944
Heckmann, A. B., Sandal, N., Bek, A. S., Madsen, L. H., Jurkiewicz, A., Nielsen, M. W., ... & Stougaard, J. (2011). Cytokinin induction of root nodule primordia in Lotus japonicus is regulated by a mechanism operating in the root cortex.
Molecular Plant-Microbe Interactions, 24(11), 1385-1395.
https://doi.org/10.1094MPMI-05-11-0142
Hirsch, S., Kim, J., Munoz, A., Heckmann, A. B., Downie, J. A., & Oldroyd, G. E. (2009). GRAS proteins form a DNA binding complex to induce gene expression during nodulation signaling in
Medicago truncatula.
The Plant Cell, 21(2), 545-557.
https://doi.org/10.1105/tpc.108.064501
Huisman, J., Codd, G. A., Paerl, H. W., Ibelings, B. W., Verspagen, J. M. H., & Visser, P. M. (2018). Cyanobacterial blooms.
Nature Reviews Microbiology, 16(8), 471-483.
https://doi.org/10.1038/s41579-018-0040-1
Horváth, B., Yeun, L. H., Domonkos, Á., Halász, G., Gobbato, E., Ayaydin, F., ... & Kaló, P (2011).
Medicago truncatula IPD3 is a member of the common symbiotic signaling pathway required for rhizobial and mycorrhizal symbioses.
Molecular plant-microbe interactions, 24(11), 1345-1358.
https://doi.org/10.1094/MPMI-01-11-0015
Jarzyniak, K., Banasiak, J., Jamruszka, T., Pawela, A., Di Donato, M., Novák, O., ... & Jasiński, M. (2021). Early stages of legume–rhizobia symbiosis are controlled by ABCG-mediated transport of active cytokinins.
Nature Plants, 7(4), 428-436.
https://doi.org/10.1038/s41477-021-00873-6
Jin, Y., Liu, H., Luo, D., Yu, N., Dong, W., Wang, C., et al. (2016). DELLA proteins are common components of symbiotic rhizobial and mycorrhizal signalling pathways.
Nature Communications, 7(1), 12433.
https://doi.org/10.1038/ncomms12433
Laffont, C., Ivanovici, A., Gautrat, P., Brault, M., Djordjevic, M. A., & Frugier, F. (2020). The NIN transcription factor coordinates CEP and CLE signaling peptides that regulate nodulation antagonistically.
Nature Communications, 11(1), 3167.
https://doi.org/10.1038/s41467-020-16968-1
Le, N. Q. K., Yapp, E. K. Y., Nagasundaram, N., & Yeh, H.-Y. (2019). Classifying promoters by interpreting the hidden information of DNA sequences via deep learning and combination of continuous fasttext N-grams.
Frontiers in Bioengineering and Biotechnology, 7, 305.
https://doi.org/10.3389/fbioe.2019.00305
Lebedeva, M., Azarakhsh, M., Sadikova, D., & Lutova, L. (2021). At the root of nodule organogenesis: conserved regulatory pathways recruited by rhizobia.
Plants, 10(12), 2654.
https://doi.org/10.3390/plants10122654
Lévy, J., Bres, C., Geurts, R., Chalhoub, B., Kulikova, O., Duc, G., ... & Debellé, F (2004). A putative Ca
2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses.
Science, 303(5662), 1361-1364.
https://doi.org/10.1126/science.1093038
Liu, C. W., Breakspear, A., Guan, D., Cerri, M. R., Jackson, K., Jiang, S., ... & Murray, J. D. (2019). NIN acts as a network hub controlling a growth module required for rhizobial infection.
Plant Physiology, 179(4), 1704-1722.
https://doi.org/10.1104/pp.18.01572
Liu, J., Rutten, L., Limpens, E., Van Der Molen, T., Van Velzen, R., Chen, R., ... & Bisseling, T. (2019). A remote cis-regulatory region is required for NIN expression in the pericycle to initiate nodule primordium formation in
Medicago truncatula.
The Plant Cell, 31(1), 68-83.
https://doi.org/10.1105/tpc.18.00478
Messinese, E., Mun, J. H., Yeun, L. H., Jayaraman, D., Rougé, P., Barre, A., ... & Ané, J. M. (2007). A novel nuclear protein interacts with the symbiotic DMI3 calcium-and calmodulin-dependent protein kinase of
Medicago truncatula.
Molecular Plant-Microbe Interactions, 20(8), 912-921.
https://doi.org/10.1094/MPMI-20-8-0912
Murray, J. D., Karas, B. J., Sato, S., Tabata, S., Amyot, L., & Szczyglowski, K. (2007). A cytokinin perception mutant colonized by Rhizobium in the absence of nodule organogenesis.
Science, 315(5808), 101-104.
https://doi.org/10.1126/science.1132514
Oldroyd, G. E. (2013). Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants.
Nature Reviews Microbiology, 11(4), 252-263.
https://doi.org/10.1038/nrmicro2990
Ötvös, K., Marconi, M., Vega, A., O’Brien, J., Johnson, A., Abualia, R., ... & Benková, E. (2021). Modulation of plant root growth by nitrogen source‐defined regulation of polar auxin transport.
The EMBO Journal, 40(3), e106862.
https://doi.org/10.15252/embj.2020106862
Ovchinnikova, E., Journet, E. P., Chabaud, M., Cosson, V., Ratet, P., Duc, G., ... & Limpens, E. (2011). IPD3 controls the formation of nitrogen-fixing symbiosomes in pea and Medicago Spp.
Molecular Plant-Microbe Interactions, 24(11), 1333-1344.
https://doi.org/10.1094/MPMI-01-11-0013
Plet, J., Wasson, A., Ariel, F., Le Signor, C., Baker, D., Mathesius, U., ... & Frugier, F. (2011). MtCRE1‐dependent cytokinin signaling integrates bacterial and plant cues to coordinate symbiotic nodule organogenesis in
Medicago truncatula.
The Plant Journal, 65(4), 622-633.
https://doi.org/10.1111/j.1365-313X.2010.04447.x
Roux, B., Rodde, N., Jardinaud, M. F., Timmers, T., Sauviac, L., Cottret, L., ... & Gamas, P. (2014). An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser‐capture microdissection coupled to RNA sequencing. The Plant Journal, 77(6), 817-837. https://doi.org/10.1111/tpj.12442
Roy, S., Liu, W., Nandety, R. S., Crook, A., Mysore, K. S., Pislariu, C. I., ... & Udvardi, M. K. (2020). Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation.
The Plant Cell, 32(1), 15-41.
https://doi.org/10.1105/tpc.19.00279
Schiessl, K., Lilley, J. L., Lee, T., Tamvakis, I., Kohlen, W., Bailey, P. C., ... & Oldroyd, G. E. (2019). Nodule inception recruits the lateral root developmental program for symbiotic nodule organogenesis in
Medicago truncatula.
Current Biology, 29(21), 3657-3668. e3655.
https://doi.org/10.1016/j.cub.2019.09.005
Simpson, C., Mur, L. A., Gupta, A. K., Kumari, A., & Gupta, K. J. (2017). Moving nitrogen to the centre of plant defence against pathogens.
Annals of Botany, 119(5), 703-709.
https://doi.org/10.1093/aob/mcw179
Singh, S., Katzer, K., Lambert, J., Cerri, M., & Parniske, M. (2014). CYCLOPS, a DNA-binding transcriptional activator, orchestrates symbiotic root nodule development.
Cell Host and Microbe, 15(2), 139-152.
https://doi.org/10.1016/j.chom.2014.01.011
Soyano, T., Hirakawa, H., Sato, S., Hayashi, M., & Kawaguchi, M. (2014). NODULE INCEPTION creates a long-distance negative feedback loop involved in homeostatic regulation of nodule organ production.
Proceedings of the National Academy of Sciences, 111(40), 14607-14612.
https://doi.org/10.1073/pnas.1412716111
Soyano, T., Kouchi, H., Hirota, A., & Hayashi, M. (2013). Nodule inception directly targets NF-Y subunit genes to regulate essential processes of root nodule development in Lotus japonicus.
PLoS Genetics, 9(3), e1003352.
https://doi.org/10.1371/journal.pgen.1003352
Sreedasyam, A., Plott, C., Hossain, M. S., Lovell, J. T., Grimwood, J., Jenkins, J. W., ... & Schmutz, J. (2023). JGI Plant Gene Atlas: an updateable transcriptome resource to improve functional gene descriptions across the plant kingdom.
Nucleic acids research, 51(16), 8383-8401.
https://doi.org/10.1093/nar/gkad616
Srivastava, A. K., Lu, Y., Zinta, G., Lang, Z., & Zhu, J. K. (2018). UTR-dependent control of gene expression in plants.
Trends in Plant Science, 23(3), 248-259.
https://doi.org/10.1016/j.tplants.2017.11.003
Stracke, S., Kistner, C., Yoshida, S., Mulder, L., Sato, S., Kaneko, T., ... & Parniske, M. (2002). A plant receptor-like kinase required for both bacterial and fungal symbiosis.
Nature, 417(6892), 959-962.
https://doi.org/10.1038/nature00841
Szklarczyk, D., Kirsch, R., Koutrouli, M., Nastou, K., Mehryary, F., Hachilif, R., ... & Von Mering, C. (2023). The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest.
Nucleic Acids Research, 51(D1), D638-D646.
https://doi.org/10.1093/nar/gkac1000
Tirichine, L., Sandal, N., Madsen, L. H., Radutoiu, S., Albrektsen, A. S., Sato, S., et al. (2007). A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis.
Science, 315(5808), 104-107.
https://doi.org/10.1126/science.1132397
Vernié, T., Kim, J., Frances, L., Ding, Y., Sun, J., Guan, D., ... & Oldroyd, G. E. (2015). The NIN transcription factor coordinates diverse nodulation programs in different tissues of the
Medicago truncatula root.
The Plant Cell, 27(12), 3410-3424.
https://doi.org/10.1105/tpc.15.00461
Yano, K., Yoshida, S., Müller, J., Singh, S., Banba, M., Vickers, K., ... & Parniske, M (2008). CYCLOPS, a mediator of symbiotic intracellular accommodation.
Proceedings of the National Academy of Sciences, 105(51), 20540-20545.
https://doi.org/10.1073/pnas.0806858105