Aguilar, R., Cristóbal-Pérez, E. J., Balvino-Olvera, F. J., de Jesús Aguilar-Aguilar, M., Aguirre-Acosta, N., Ashworth, L., ... & Quesada, M. (2019). Habitat fragmentation reduces plant progeny quality: a global synthesis. Ecology Letters, 22, 1163-1173.
https://doi.org/10.1111/ele.13272
Alberto, F.J., Aitken, S.N., Alía, R., González-Martínez, S.C., Hänninen, H., Kremer, A., Lefèvre, F., Lenormand, T., Yeaman, S., Whetten, R., & Savolainen, O. (2013). Potential for evolutionary responses to climate change-evidence from tree populations.
Global Change Biology, 19(6), 1645-1661.
https://doi.org/10.1111%2Fgcb.12181
Allendorf, FW., Funk, WC., Aitken, SN., Byrne, M., & Luikart, G. (2022). Conservation and the genomics of populations. Oxford University Press
https://doi.org/10.1111/eva.13499
Aranda, I., Cano, F. J., Gascó, A., Cochard, H., Nardini, A., Mancha, J. A., ... & Sánchez-Gómez, D (2015). Variation in photosynthetic performance and hydraulic architecture across European beech (
Fagus sylvatica L.) populations supports the case for local adaptation to water stress.
Tree Physiology, 35(1), 34-46.
https://doi.org/10.1093/treephys/tpu101
Bassam, B. J., Caetano-Anollés, G., & Gresshoff, P. M. (1991). Fast and sensitive silver staining of DNA in polyacrylamide gels.
Analytical Biochemistry, 196(1), 80-83. https://doi.org/
10.1016/0003-2697(91)90120-i
Beerli, P., & Felsenstein, J. (1999). Maximum-likelihood estimation of migration rates and effective population numbers in two populations using a coalescent approach.
Genetics, 152(2), 763-773. https://doi.org/
10.1093/genetics/152.2.763
Bijarpasi, M. M., Müller, M., & Gailing, O. (2020). Genetic diversity and structure of Oriental and European Beech populations from Iran and Europe.
Silvae Genetica, 69(1), 55-62.
https://doi.org/10.2478/sg-2020-0008
Bilela, S., Dounavi, A., Fussi, B., Konnert, M., Holst, J., Mayer, H., Rennenberg, H., & Simon, J. (2012) Natural regeneration of Fagus sylvatica L. adapts with maturation to warmer and drier microclimatic conditions.
Forest Ecology and Management, 275:60-67
https://doi.org/10.1016/j.foreco.2012.03.009
Breed, M. F., Ottewell, K. M., Gardner, M. G., Marklund, M. H., Dormontt, E. E., & Lowe, A. J. (2015). Mating patterns and pollinator mobility are critical traits in forest fragmentation genetics.
Heredity, 115(2), 108-114.
https://doi.org/10.1038/hdy.2013.48
Bresson, C. C., Vitasse, Y., Kremer, A., & Delzon, S. (2011). To what extent is altitudinal variation of functional traits driven by genetic adaptation in European oak and beech?.
Tree Physiology, 31(11), 1164-1174.
https://doi.org/10.1093/treephys/tpr084
Chapuis, M. P., & Estoup, A. (2007). Microsatellite null alleles and estimation of population differentiation.
Molecular Biology And Evolution, 24(3), 621-631.
https://doi.org/10.1093/molbev/msl191
Cuguen, J., Merzeau, D., & Thiphaut, B. (1988). Genetic structure of the European beech stands (Fagus sylvatica L.): F-statistics and importance of mating system characteristics in their evolution. Heredity, 60(1), 91-100. https://doi.org/10.1038/hdy.1988.14
Eckert, C. G., Kalisz, S., Geber, M. A., Sargent, R., Elle, E., Cheptou, P. O., ... & Winn, A. A. (2010). Plant mating systems in a changing world. Trends in Ecology and Evolution, 25(1), 35-43.
https://doi.org/10.1016/j.tree.2009.06.013
El-Kassaby, Y. A., Dunsworth, B. G., & Krakowski, J. (2003). Genetic evaluation of alternative silvicultural systems in coastal montane forests: western hemlock and amabilis fir.
Theoretical And Applied Genetics, 107, 598-610. https://doi.org/
10.1007/s00122-003-1291-3
Fageria, M. S., & Rajora, O. P. (2014). Effects of silvicultural practices on genetic diversity and population structure of white spruce in Saskatchewan.
Tree Genetics & Genomes, 10, 287-296.
https://doi.org/10.1007/s11295-013-0682-0
Finkeldey, R., & Ziehe, M. (2004). Genetic implications of silvicultural regimes. Forest Ecology and Management, 197(1-3), 231-244. https://doi.org/10.1016/j.foreco.2004.05.036
Forsdick, N. J., Cubrinovska, I., Massaro, M., & Hale, M. L. (2017). Genetic diversity and population differentiation within and between island populations of two sympatric Petroica robins, the Chatham Island black robin and tomtit.
Conservation Genetics, 18, 275-285. https://doi.org/
10.1007/s10592-016-0899-1
Gougherty, A. V., Keller, S. R., & Fitzpatrick, M. C. (2021). Maladaptation, migration and extirpation fuel climate change risk in a forest tree species.
Nature Climate Change, 11(2), 166-171.
https://doi.org/10.1038/s41558-020-00968-6
Hajek, P., Kurjak, D., von Wühlisch, G., Delzon, S., & Schuldt, B. (2016). Intraspecific variation in wood anatomical, hydraulic, and foliar traits in ten European beech provenances differing in growth yield.
Frontiers in Plant Science, 7, 791.
https://doi.org/10.3389/fpls.2016.00791
Hanaoka, S., Yuzurihara, J., Asuka, Y., Tomaru, N., Tsumura, Y., Kakubari, Y., & Mukai, Y. (2007). Pollen-mediated gene flow in a small, fragmented natural population of Fagus crenata.
Botany, 85(4), 404-413. https://doi.org/
10.1139/B07-036
Hosius, B., Leinemann, L., Konnert, M., & Bergmann, F. (2006). Genetic aspects of forestry in the Central Europe. European Journal of Forest Research, 125(4), 407-417. https://doi.org/
10.1007/s10342-006-0136-4
Hosseini, S. M., Madjnonian, B., & Nieuwenhuis, M. (2000). Damage to natural regeneration in the Hyrcanian forests of Iran: a comparison of two typical timber extraction operations.
Journal of Forest Engineering, 11(2), 69-73.
https://doi.org/10.1080/08435243.2000.10702756
Janfaza, S., Yousefzadeh, H., Hosseini Nasr, S. M., Botta, R., Asadi Abkenar, A., & Torello M, D. (2017). Genetic diversity of Castanea sativa an endangered species in the Hyrcanian forest.
Silva Fennica, 51(1), 1-15.
https://doi.org/10.14214/sf.1705
Kempf, M., & Konnert, M. (2016). Distribution of genetic diversity in Fagus sylvatica at the north-eastern edge of the natural range.
Silva Fennica, 50(4).
https://doi.org/10.14214/sf.1663
Kijowska-Oberc, J., Staszak, A. M., Kamiński, J., & Ratajczak, E. (2020). Adaptation of forest trees to rapidly changing climate.
Forests, 11(2), 123.
https://doi.org/10.3390/f11020123
Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A., & Mayrose, I. (2015). Clumpak: a program for identifying clustering modes and packaging population structure inferences across K.
Molecular Ecology Resources, 15(5), 1179-1191.
https://doi.org/10.1111/1755-0998.12387
Kramer, K., Degen, B., Buschbom, J., Hickler, T., Thuiller, W., Sykes, M. T., & de Winter, W. (2010). Modeling exploration of the future of European beech (
Fagus sylvatica L.) under climate change-range, abundance, genetic diversity and adaptive response.
Forest Ecology and Management, 259(11), 2213-2222. https://doi.org/
10.1016/j.foreco.2009.12.023
Merril, C. R., Dunau, M. L., & Goldman, D. (1981). A rapid sensitive silver stain for polypeptides in polyacrylamide gels.
Analytical Biochemistry, 110(1), 201-207. https://doi.org/
10.1016/00032697(81)90136-6
Merzeau, D., Comps, B., Thiebaut, B., Cuguen, J., & Letouzey, J. (1994). Genetic structure of natural stands of
Fagus sylvatica L.(beech).
Heredity, 72(3), 269-277.
https://doi.org/10.1038/hdy.1994.37
Müller, M., & Finkeldey, R. (2016). Genetic and adaptive trait variation in seedlings of European beech provenances from Northern Germany.
Silvae Genetica, 65(2), 65-73.
https://doi.org/10.1515/sg-2016-0018
Murray, M. G., & Thompson, W. (1980). Rapid isolation of high molecular weight plant DNA
. Nucleic Acids Research, 8(19), 4321-4326. https://doi.org/
10.1093/nar/8.19.4321
Nasiri, M., Yousefzadeh, H., Shirvany, A., Etemad, V., Espahbodi, K., Amirchakhmaghi, N., & Rajora, O. P. (2023). Effects of fifty years of shelterwood harvesting on genetic diversity and population structure of Oriental beech (
Fagus orientalis L.) in the relict Hyrcanian forest.
Forest Ecology And Management, 529, 120623. https://doi.org/
10.1016/j.foreco.2022.120623
Nonić, M., & Šijačić-Nikolić, M. (2021). Genetic Diversity: Sources, Threats, and Conservation. In W. Leal Filho, A. M. Azul, L. Brandli, A. Lange Salvia, & T. Wall (Eds.), Life on Land (pp. 421-435). Springer.
https://doi.org/10.1007/978-3-319-95981-8_53
Paffetti, D., Travaglini, D., Buonamici, A., Nocentini, S., Vendramin, G. G., Giannini, R., & Vettori, C. (2012). The influence of forest management on beech (Fagus sylvatica L.) stand structure and genetic diversity.
Forest Ecology And Management, 284, 34-44. https://doi.org/
10.1016/j.foreco.2012.07.026
Pastorelli, R., Smulders, M. J. M., Van’t Westende, W. P. C., Vosman, B., Giannini, R., Vettori, C., & Vendramin, G. G. (2003). Characterization of microsatellite markers in Fagus sylvatica L. and Fagus orientalis Lipsky.
Molecular Ecology Notes, 3(1), 76-78. https://doi.org/
10.1046/j.14718286.2003.00355.x
Piotti, A., Leonardi, S., Buiteveld, J., Geburek, T., Gerber, S., Kramer, K., ... & Vendramin, G. G. (2012). Comparison of pollen gene flow among four European beech (Fagus sylvatica L.) populations characterized by different management regimes.
Heredity, 108(3), 322-331.
https://doi.org/10.1038/hdy.2011.77
Pourmajidian, M. R., Malakshah, N. E., Fallah, A., & Parsakhoo, A. (2009). Evaluating the shelterwood harvesting system after 25 years in a beech
Fagus orientalis Lipsky) forest in Iran.
Journal of Forest Science, 55(6), 270-278.
https://doi.org/10.17221/77/2008-JFS.
Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945-959. https://doi.org/
10.1093/genetics/155.2.945
Rajendra, K. C., Seifert, S., Prinz, K., Gailing, O., & Finkeldey, R. (2014). Subtle human impacts on neutral genetic diversity and spatial patterns of genetic variation in European beech (
Fagus sylvatica).
Forest Ecology and Management, 319, 138-149. https://doi.org/
10.1016/j.foreco.2014.02.003
Rajora, O.P., Mosseler, A. (2001). Molecular markers in sustainable management, conservation, and restoration of forest genetic resources. In: Müller-Starck, G., Schubert, R. (eds) Genetic Response of Forest Systems to Changing Environmental Conditions. Forestry Sciences, vol 70. Springer, Dordrecht.
https://doi.org/10.1007/978-94-015-9839-2_16
Rasaneh, Y., Moshtagh-Kahnamoie, M. H., & Salehi, P. (2001). Quantitative and qualitative investigation on forests of northern Iran. Proceedings of the National Meeting on Management of Northern Forests in Iran, Ramsar, 6-7 September, pp. 55-79. (In Persian).
Sagheb Talebi, K., Sajedi, T., & Pourhashemi, M. (2014). Forests of Iran: A Treasure from the Past, a Hope for the Future (No. 15325). Springer Netherlands. https://doi.org/
10.1007/978-94-007-7371-4
Sagheb‐Talebi, K., & Schütz, J. P. (2002). The structure of natural oriental beech (Fagus orientalis) forests in the Caspian region of Iran and potential for the application of the group selection system.
Forestry, 75(4), 465-472.
https://doi.org/10.1093/forestry/75.4.465
Sagnard, F., Oddou-Muratorio, S., Pichot, C., Vendramin, G. G., & Fady, B. (2011). Effects of seed dispersal, adult tree and seedling density on the spatial genetic structure of regeneration at fine temporal and spatial scales.
Tree Genetics and Genomes, 7(1), 37-48.
https://doi.org/10.1007/s11295-010-0313-y
Savolainen, O., & Kärkkäinen, K. (1992). Effect of forest management on gene pools. In Population Genetics of Forest Trees: Proceedings of the International Symposium on Population Genetics of Forest Trees Corvallis, Oregon, USA, July 31-August 2, 1990 (pp. 329-345). Springer Netherlands.
https://doi.org/10.1007/s11295-010-0313-y
Sefidi, K., Mohadjer, M. R. M., Mosandl, R., & Copenheaver, C. A. (2011). Canopy gaps and regeneration in old-growth Oriental beech (Fagus orientalis Lipsky) stands, northern Iran.
Forest Ecology and Management, 262(6),1094-1099. https://doi.org/
10.1016/j.foreco.2011.06.008
Shafiei, A. B., Akbarinia, M., Jalali, G., & Hosseini, M. (2010). Forest fire effects in beech dominated mountain forest of Iran.
Forest Ecology and Management, 259(11), 2191-2196. https://doi.org/
10.1016/j.foreco.2010.02.025
Salehi Shanjani, P., Vendramin, G. G., & Calagari, M. (2010). Genetic diversity and differentiation of Fagus orientalis Lipsky in Hyrcanian forests revealed by nuclear and chloroplast microsatellite markers.
Conservation Genetics, 11, 2321-2331. https://doi.org/
10.1007/s10592-010-0118-4
Šijačić-Nikolić, M., Milovanović, J., & Nonić, M. (2014). Conservation of forest genetic resources.
Biotechnology and Biodiversity, 103-128. https://doi.org/
10.1007/978-3-319-09381-9
Sork, V. L., Davis, F. W., Smouse, P. E., Apsit, V. J., Dyer, R. J., Fernandez‐M, J. F., & Kuhn, B. (2002). Pollen movement in declining populations of California Valley oak, Quercus lobata: where have all the fathers gone?.
Molecular Ecology, 11(9), 1657-1668.
https://doi.org/10.1046/j.1365-294x.2002.01574.x
Souza, L. C., Júnior, A. S., Souza, M. C., Kunz, S. H., & Miranda, F. D. (2017). Genetic diversity of
Plathymenia reticulata Benth. in fragments of Atlantic Forest in southeastern Brazil. Genetics and Molecular Research, 16(3). https://doi.org/
10.4238/gmr16039775
Sun, R., Lin, F., Huang, P., & Zheng, Y. (2016). Moderate genetic diversity and genetic differentiation in the relict tree Liquidambar formosana Hance revealed by genic simple sequence repeat markers
. Frontiers in Plant Science,7,1411.
https://doi.org/10.3389/fpls.2016.01411
Szasz-Len, A. M., & Konnert, M. (2018). Genetic diversity in European beech (Fagus sylvatica L.) seed stands in the Romanian Carpathians.
Annals of Forest Research, 65-80. https://doi.org/
10.15287/afr.2018.1019
Vajari, K. A., Jalilvand, H., Pourmajidian, M. R., Espahbodi, K., & Moshki, A. (2012). Effect of canopy gap size and ecological factors on species diversity and beech seedlings in managed beech stands in Hyrcanian forests.
Journal of Forestry Research, 23, 217-222.
https://doi.org/10.1007/s11676-012-0244-6
Vekemans, X., & Hardy, O. J. (2004). New insights from fine‐scale spatial genetic structure analyses in plant populations.
Molecular Ecology, 13(4), 921-935. https://doi.org/
10.1046/j.1365294x.2004.02076
Vranckx, G., Jacquemyn, H., Mergeay, J., Cox, K., Kint, V., Muys, B., & Honnay, O. (2014). Transmission of genetic variation from the adult generation to naturally established seedling cohorts in small forest stands of pedunculate oak (
Quercus robur L.).
Forest Ecology and Management, 312, 19-27.
https://doi.org/10.1016/j.foreco.2013.10.027
Wiberg, R. A. W., Scobie, A. R., A'Hara, S. W., Ennos, R. A., & Cottrell, J. E. (2016). The genetic consequences of long term habitat fragmentation on a self-incompatible clonal plant, Linnaea borealis L.
Biological Conservation, 201, 405-413. https://doi.org/
10.1016/j.biocon.2016.07.032
Wilson, G. A., & Rannala, B. (2003). Bayesian inference of recent migration rates using multilocus genotypes.
Genetics, 163(3),1177-1191. https://doi.org/
10.1093/genetics/163.3.1177
Winter, D. J. (2012). MMOD: an R library for the calculation of population differentiation statistics.
Molecular Ecology Resources, 12(6), 1158-1160. https://doi.org/
10.1111/j.17550998.2012. 03174.x