Transmission of Genetic Variation from the Adult Generation to Naturally Established Seedlings of Fagus orientalis in the Hyrcanian Forest

Document Type : Research Article

Authors

1 Department of Forestry, Faculty of Natural Sciences, Tarbiat Modares University, Tehran, Iran

2 Department of Forestry, Faculty of Natural Resources, University of Tehran, Tehran, Iran

3 Department of Environmental Science, Faculty of Natural Sciences, Tarbiat Modares University, Tehran, Iran

4 Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland

5 Department of Biology and Botanic Garden, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland

6 Eastern China Conservation Center for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Chenhua Road No.3888, Songjiang, Shanghai 201602, China

7 Natural History Museum Fribourg, Chemin du Musée 6, CH-1700 Fribourg, Switzerland

Abstract

Oriental beech (Fagus orientalis) is distributed from Turkey to northern Iran. It is one of the most economically important tree species in this natural distribution range and has been exploited for a long time in the Hyrcanian forest. This study compared genetic variation between adult individuals and recent cohorts of 1–3-year-old seedlings using 14 SSR primers in four pure stands of F. orientalis with over 90% canopy cover. The results showed that the expected heterozygosity (He) varied from 0.83 to 0.92 (mean value 0.88), and a significant difference was detected between the expected and observed heterozygosity. In total, 75 private alleles were detected; of these, 56 were rare and had a frequency below 0.05. Pairwise Fst values indicated that seedlings were more similar to each other than to mature trees in the same population. It was found that the populations in each pair (mature trees-seedlings) differed (global average D = 0.35). The average percentage of migrants in the population was 8.83% and varied from 6.64% to 13.41%. The genetic differentiation within the same stands, the genetic differences between adults and seedlings were also significant in some populations, and contemporary gene flow drastically decreased in the next generation. Therefore, the transfer of genetic variation between tree generations is currently strongly affected by anthropogenic influence, at least in the studied beech populations, leading to the high vulnerability of Oriental beech populations to future climate changes.

Keywords

Main Subjects


Aguilar, R., Cristóbal-Pérez, E. J., Balvino-Olvera, F. J., de Jesús Aguilar-Aguilar, M., Aguirre-Acosta, N., Ashworth, L., ... & Quesada, M. (2019). Habitat fragmentation reduces plant progeny quality: a global synthesis. Ecology Letters, 22, 1163-1173. https://doi.org/10.1111/ele.13272
Alberto, F.J., Aitken, S.N., Alía, R., González-Martínez, S.C., Hänninen, H., Kremer, A., Lefèvre, F., Lenormand, T., Yeaman, S., Whetten, R., & Savolainen, O. (2013). Potential for evolutionary responses to climate change-evidence from tree populations. Global Change Biology, 19(6), 1645-1661. https://doi.org/10.1111%2Fgcb.12181
Allendorf, FW., Funk, WC., Aitken, SN., Byrne, M., & Luikart, G. (2022). Conservation and the genomics of populations. Oxford University Press https://doi.org/10.1111/eva.13499
Aranda, I., Cano, F. J., Gascó, A., Cochard, H., Nardini, A., Mancha, J. A., ... & Sánchez-Gómez, D (2015). Variation in photosynthetic performance and hydraulic architecture across European beech (Fagus sylvatica L.) populations supports the case for local adaptation to water stress. Tree Physiology, 35(1), 34-46. https://doi.org/10.1093/treephys/tpu101
Asuka, Y., Tani, N., Tsumura, Y., & Tomaru, N. (2004). Development and characterization of microsatellite markers for Fagus crenata Blume. Molecular Ecology Notes, 4(1), 101-103. https://doi.org/10.1046/j.14718286.2003.00583.x
Bassam, B. J., Caetano-Anollés, G., & Gresshoff, P. M. (1991). Fast and sensitive silver staining of DNA in polyacrylamide gels. Analytical Biochemistry, 196(1), 80-83. https://doi.org/10.1016/0003-2697(91)90120-i
Beerli, P., & Felsenstein, J. (1999). Maximum-likelihood estimation of migration rates and effective population numbers in two populations using a coalescent approach. Genetics, 152(2), 763-773. https://doi.org/10.1093/genetics/152.2.763
Beerli, P., & Palczewski, M. (2010). Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics, 185(1), 313-326. https://doi.org/10.1534/genetics.109.112532
Bijarpasi, M. M., Müller, M., & Gailing, O. (2020). Genetic diversity and structure of Oriental and European Beech populations from Iran and Europe. Silvae Genetica, 69(1), 55-62. https://doi.org/10.2478/sg-2020-0008
Bilela, S., Dounavi, A., Fussi, B., Konnert, M., Holst, J., Mayer, H., Rennenberg, H., & Simon, J. (2012) Natural regeneration of Fagus sylvatica L. adapts with maturation to warmer and drier microclimatic conditions. Forest Ecology and Management, 275:60-67 https://doi.org/10.1016/j.foreco.2012.03.009
Breed, M. F., Ottewell, K. M., Gardner, M. G., Marklund, M. H., Dormontt, E. E., & Lowe, A. J. (2015). Mating patterns and pollinator mobility are critical traits in forest fragmentation genetics. Heredity, 115(2), 108-114. https://doi.org/10.1038/hdy.2013.48
Bresson, C. C., Vitasse, Y., Kremer, A., & Delzon, S. (2011). To what extent is altitudinal variation of functional traits driven by genetic adaptation in European oak and beech?. Tree Physiology, 31(11), 1164-1174. https://doi.org/10.1093/treephys/tpr084
Chapuis, M. P., & Estoup, A. (2007). Microsatellite null alleles and estimation of population differentiation. Molecular Biology And Evolution, 24(3), 621-631. https://doi.org/10.1093/molbev/msl191
Chybicki, I. J., & Burczyk, J. (2009). Simultaneous estimation of null alleles and inbreeding coefficients. Journal Of Heredity, 100(1), 106-113. https://doi.org/10.1093/jhered/esn088
Cuguen, J., Merzeau, D., & Thiphaut, B. (1988). Genetic structure of the European beech stands (Fagus sylvatica L.): F-statistics and importance of mating system characteristics in their evolution. Heredity, 60(1), 91-100. https://doi.org/10.1038/hdy.1988.14
Eckert, C. G., Kalisz, S., Geber, M. A., Sargent, R., Elle, E., Cheptou, P. O., ... & Winn, A. A. (2010). Plant mating systems in a changing world. Trends in Ecology and Evolution, 25(1), 35-43. https://doi.org/10.1016/j.tree.2009.06.013
El-Kassaby, Y. A., Dunsworth, B. G., & Krakowski, J. (2003). Genetic evaluation of alternative silvicultural systems in coastal montane forests: western hemlock and amabilis fir. Theoretical And Applied Genetics, 107, 598-610. https://doi.org/10.1007/s00122-003-1291-3
Epperson, B. K. (2003). Geographical genetics (MPB-38) (Vol. 38). Princeton University Press. https://doi.org/10.1515/9781400835621
Fageria, M. S., & Rajora, O. P. (2014). Effects of silvicultural practices on genetic diversity and population structure of white spruce in Saskatchewan. Tree Genetics & Genomes, 10, 287-296. https://doi.org/10.1007/s11295-013-0682-0
Finkeldey, R., & Ziehe, M. (2004). Genetic implications of silvicultural regimes. Forest Ecology and Management, 197(1-3), 231-244. https://doi.org/10.1016/j.foreco.2004.05.036
Forsdick, N. J., Cubrinovska, I., Massaro, M., & Hale, M. L. (2017). Genetic diversity and population differentiation within and between island populations of two sympatric Petroica robins, the Chatham Island black robin and tomtit. Conservation Genetics, 18, 275-285. https://doi.org/10.1007/s10592-016-0899-1
Geburek, T. (1997). Isozymes and DNA markers in gene conservation of forest trees. Biodiversity and Conservation, 6, 1639-1654. https://doi.org/10.1023/A:1018330906758
Gougherty, A. V., Keller, S. R., & Fitzpatrick, M. C. (2021). Maladaptation, migration and extirpation fuel climate change risk in a forest tree species. Nature Climate Change, 11(2), 166-171. https://doi.org/10.1038/s41558-020-00968-6
Hajek, P., Kurjak, D., von Wühlisch, G., Delzon, S., & Schuldt, B. (2016). Intraspecific variation in wood anatomical, hydraulic, and foliar traits in ten European beech provenances differing in growth yield. Frontiers in Plant Science, 7, 791. https://doi.org/10.3389/fpls.2016.00791
Hanaoka, S., Yuzurihara, J., Asuka, Y., Tomaru, N., Tsumura, Y., Kakubari, Y., & Mukai, Y. (2007). Pollen-mediated gene flow in a small, fragmented natural population of Fagus crenata. Botany, 85(4), 404-413. https://doi.org/10.1139/B07-036
Hosius, B., Leinemann, L., Konnert, M., & Bergmann, F. (2006). Genetic aspects of forestry in the Central Europe. European Journal of Forest Research, 125(4), 407-417. https://doi.org/10.1007/s10342-006-0136-4
Hosseini, S. M., Madjnonian, B., & Nieuwenhuis, M. (2000). Damage to natural regeneration in the Hyrcanian forests of Iran: a comparison of two typical timber extraction operations. Journal of Forest Engineering, 11(2), 69-73. https://doi.org/10.1080/08435243.2000.10702756
Janfaza, S., Yousefzadeh, H., Hosseini Nasr, S. M., Botta, R., Asadi Abkenar, A., & Torello M, D. (2017). Genetic diversity of Castanea sativa an endangered species in the Hyrcanian forest. Silva Fennica, 51(1), 1-15. https://doi.org/10.14214/sf.1705
Jombart, T. (2008). Analyses multivariées de marqueurs génétiques: développements méthodologiques, applications et extensions (Doctoral dissertation, Lyon 1). https://doi.org/10.3389/fevo.2022.872176
Kempf, M., & Konnert, M. (2016). Distribution of genetic diversity in Fagus sylvatica at the north-eastern edge of the natural range. Silva Fennica, 50(4). https://doi.org/10.14214/sf.1663
Kijowska-Oberc, J., Staszak, A. M., Kamiński, J., & Ratajczak, E. (2020). Adaptation of forest trees to rapidly changing climate. Forests, 11(2), 123. https://doi.org/10.3390/f11020123
Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A., & Mayrose, I. (2015). Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Molecular Ecology Resources, 15(5), 1179-1191. https://doi.org/10.1111/1755-0998.12387
Kramer, K., Degen, B., Buschbom, J., Hickler, T., Thuiller, W., Sykes, M. T., & de Winter, W. (2010). Modeling exploration of the future of European beech (Fagus sylvatica L.) under climate change-range, abundance, genetic diversity and adaptive response. Forest Ecology and Management, 259(11), 2213-2222. https://doi.org/10.1016/j.foreco.2009.12.023
Merril, C. R., Dunau, M. L., & Goldman, D. (1981). A rapid sensitive silver stain for polypeptides in polyacrylamide gels. Analytical Biochemistry, 110(1), 201-207. https://doi.org/10.1016/00032697(81)90136-6
Merzeau, D., Comps, B., Thiebaut, B., Cuguen, J., & Letouzey, J. (1994). Genetic structure of natural stands of Fagus sylvatica L.(beech). Heredity, 72(3), 269-277. https://doi.org/10.1038/hdy.1994.37
Müller, M., & Finkeldey, R. (2016). Genetic and adaptive trait variation in seedlings of European beech provenances from Northern Germany. Silvae Genetica, 65(2), 65-73. https://doi.org/10.1515/sg-2016-0018
Murray, M. G., & Thompson, W. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8(19), 4321-4326. https://doi.org/10.1093/nar/8.19.4321
Nasiri, M., Yousefzadeh, H., Shirvany, A., Etemad, V., Espahbodi, K., Amirchakhmaghi, N., & Rajora, O. P. (2023). Effects of fifty years of shelterwood harvesting on genetic diversity and population structure of Oriental beech (Fagus orientalis L.) in the relict Hyrcanian forest. Forest Ecology And Management, 529, 120623. https://doi.org/10.1016/j.foreco.2022.120623
Nielsen, P.C. and Muckadell, M. D (1954). Flower observations and controlled pollinations in Fagus. Silvae Genetica, 3, 6-17. https://api.semanticscholar.org/CorpusID:222406984
Nonić, M., & Šijačić-Nikolić, M. (2021). Genetic Diversity: Sources, Threats, and Conservation. In W. Leal Filho, A. M. Azul, L. Brandli, A. Lange Salvia, & T. Wall (Eds.), Life on Land (pp. 421-435). Springer. https://doi.org/10.1007/978-3-319-95981-8_53
Paffetti, D., Travaglini, D., Buonamici, A., Nocentini, S., Vendramin, G. G., Giannini, R., & Vettori, C. (2012). The influence of forest management on beech (Fagus sylvatica L.) stand structure and genetic diversity. Forest Ecology And Management, 284, 34-44. https://doi.org/10.1016/j.foreco.2012.07.026
Paradis, E. (2010). pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics, 26(3), 419-420. https://doi.org/10.1093/bioinformatics/btp696
Pastorelli, R., Smulders, M. J. M., Van’t Westende, W. P. C., Vosman, B., Giannini, R., Vettori, C., & Vendramin, G. G. (2003). Characterization of microsatellite markers in Fagus sylvatica L. and Fagus orientalis Lipsky. Molecular Ecology Notes, 3(1), 76-78. https://doi.org/10.1046/j.14718286.2003.00355.x
Peakall, R. O. D., & Smouse, P. E. (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6(1), 288-295. https://doi.org/10.1111/j.14718286.2005.01155.x
Piotti, A., Leonardi, S., Buiteveld, J., Geburek, T., Gerber, S., Kramer, K., ... & Vendramin, G. G. (2012). Comparison of pollen gene flow among four European beech (Fagus sylvatica L.) populations characterized by different management regimes. Heredity, 108(3), 322-331. https://doi.org/10.1038/hdy.2011.77
Pourmajidian, M. R., Malakshah, N. E., Fallah, A., & Parsakhoo, A. (2009). Evaluating the shelterwood harvesting system after 25 years in a beech Fagus orientalis Lipsky) forest in Iran. Journal of Forest Science, 55(6), 270-278. https://doi.org/10.17221/77/2008-JFS.
Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945-959. https://doi.org/10.1093/genetics/155.2.945
Rajendra, K. C., Seifert, S., Prinz, K., Gailing, O., & Finkeldey, R. (2014). Subtle human impacts on neutral genetic diversity and spatial patterns of genetic variation in European beech (Fagus sylvatica). Forest Ecology and Management, 319, 138-149. https://doi.org/10.1016/j.foreco.2014.02.003
Rajora, O.P., Mosseler, A. (2001). Molecular markers in sustainable management, conservation, and restoration of forest genetic resources. In: Müller-Starck, G., Schubert, R. (eds) Genetic Response of Forest Systems to Changing Environmental Conditions. Forestry Sciences, vol 70. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9839-2_16
Rasaneh, Y., Moshtagh-Kahnamoie, M. H., & Salehi, P. (2001). Quantitative and qualitative investigation on forests of northern Iran. Proceedings of the National Meeting on Management of Northern Forests in Iran, Ramsar, 6-7 September, pp. 55-79. (In Persian).
Sagheb Talebi, K., Sajedi, T., & Pourhashemi, M. (2014). Forests of Iran: A Treasure from the Past, a Hope for the Future (No. 15325). Springer Netherlands. https://doi.org/10.1007/978-94-007-7371-4
Sagheb‐Talebi, K., & Schütz, J. P. (2002). The structure of natural oriental beech (Fagus orientalis) forests in the Caspian region of Iran and potential for the application of the group selection system. Forestry, 75(4), 465-472. https://doi.org/10.1093/forestry/75.4.465
Sagnard, F., Oddou-Muratorio, S., Pichot, C., Vendramin, G. G., & Fady, B. (2011). Effects of seed dispersal, adult tree and seedling density on the spatial genetic structure of regeneration at fine temporal and spatial scales. Tree Genetics and Genomes, 7(1), 37-48. https://doi.org/10.1007/s11295-010-0313-y
Savolainen, O., & Kärkkäinen, K. (1992). Effect of forest management on gene pools. In Population Genetics of Forest Trees: Proceedings of the International Symposium on Population Genetics of Forest Trees Corvallis, Oregon, USA, July 31-August 2, 1990 (pp. 329-345). Springer Netherlands. https://doi.org/10.1007/s11295-010-0313-y
Sefidi, K., Mohadjer, M. R. M., Mosandl, R., & Copenheaver, C. A. (2011). Canopy gaps and regeneration in old-growth Oriental beech (Fagus orientalis Lipsky) stands, northern Iran. Forest Ecology and Management, 262(6),1094-1099. https://doi.org/10.1016/j.foreco.2011.06.008
Shafiei, A. B., Akbarinia, M., Jalali, G., & Hosseini, M. (2010). Forest fire effects in beech dominated mountain forest of Iran. Forest Ecology and Management, 259(11), 2191-2196. https://doi.org/10.1016/j.foreco.2010.02.025
Salehi Shanjani, P., Vendramin, G. G., & Calagari, M. (2010). Genetic diversity and differentiation of Fagus orientalis Lipsky in Hyrcanian forests revealed by nuclear and chloroplast microsatellite markers. Conservation Genetics, 11, 2321-2331. https://doi.org/10.1007/s10592-010-0118-4
Šijačić-Nikolić, M., Milovanović, J., & Nonić, M. (2014). Conservation of forest genetic resources. Biotechnology and Biodiversity, 103-128. https://doi.org/10.1007/978-3-319-09381-9
Sork, V. L., Davis, F. W., Smouse, P. E., Apsit, V. J., Dyer, R. J., Fernandez‐M, J. F., & Kuhn, B. (2002). Pollen movement in declining populations of California Valley oak, Quercus lobata: where have all the fathers gone?. Molecular Ecology, 11(9), 1657-1668. https://doi.org/10.1046/j.1365-294x.2002.01574.x
Souza, L. C., Júnior, A. S., Souza, M. C., Kunz,  S. H., & Miranda, F. D. (2017). Genetic diversity of Plathymenia reticulata Benth. in fragments of Atlantic Forest in southeastern Brazil. Genetics and Molecular Research, 16(3). https://doi.org/10.4238/gmr16039775
Sun, R., Lin, F., Huang, P., & Zheng, Y. (2016). Moderate genetic diversity and genetic differentiation in the relict tree Liquidambar formosana Hance revealed by genic simple sequence repeat markers. Frontiers in Plant Science,7,1411. https://doi.org/10.3389/fpls.2016.01411
Szasz-Len, A. M., & Konnert, M. (2018). Genetic diversity in European beech (Fagus sylvatica L.) seed stands in the Romanian Carpathians. Annals of Forest Research, 65-80. https://doi.org/10.15287/afr.2018.1019
Vajari, K. A., Jalilvand, H., Pourmajidian, M. R., Espahbodi, K., & Moshki, A. (2012). Effect of canopy gap size and ecological factors on species diversity and beech seedlings in managed beech stands in Hyrcanian forests. Journal of Forestry Research, 23, 217-222. https://doi.org/10.1007/s11676-012-0244-6
Vekemans, X., & Hardy, O. J. (2004). New insights from fine‐scale spatial genetic structure analyses in plant populations. Molecular Ecology, 13(4), 921-935. https://doi.org/10.1046/j.1365294x.2004.02076
Vranckx, G., Jacquemyn, H., Mergeay, J., Cox, K., Kint, V., Muys, B., & Honnay, O. (2014). Transmission of genetic variation from the adult generation to naturally established seedling cohorts in small forest stands of pedunculate oak (Quercus robur L.). Forest Ecology and Management, 312, 19-27. https://doi.org/10.1016/j.foreco.2013.10.027
Wiberg, R. A. W., Scobie, A. R., A'Hara, S. W., Ennos, R. A., & Cottrell, J. E. (2016). The genetic consequences of long term habitat fragmentation on a self-incompatible clonal plant, Linnaea borealis L. Biological Conservation, 201, 405-413. https://doi.org/10.1016/j.biocon.2016.07.032
Wilson, G. A., & Rannala, B. (2003). Bayesian inference of recent migration rates using multilocus genotypes. Genetics, 163(3),1177-1191. https://doi.org/10.1093/genetics/163.3.1177
Winter, D. J. (2012). MMOD: an R library for the calculation of population differentiation statistics. Molecular Ecology Resources, 12(6), 1158-1160. https://doi.org/10.1111/j.17550998.2012. 03174.x