Abou-Dobara, M., El-Sayed, A., El-Fallal, A., & Sauf, M. (2019). Survey for Tyrosinase production by Streptomyces species.
Journal of Egyptian Academic Society for Environmental Development. D, Environmental Studies, 20(1), 79-90.
https://dx.doi.org/10.21608/jades.2019.67696
Ait Assou, S., Anissi, J., Sendide, K., & El Hassouni, M. (2023). Diversity and antimicrobial activities of actinobacteria isolated from mining soils in Midelt Region, Morocco.
The Scientific World Journal, 2023(1), 6106673.
https://doi.org/10.1155/2023/6106673
Behera, S., & Das, S. (2023). Potential and prospects of actinobacteria in the bioremediation of environmental pollutants: Cellular mechanisms and genetic regulations.
Microbiological Research, 273, 127399.
https://doi.org/10.1016/j.micres.2023.127399
Biyashev, D., Siwicka, Z. E., Onay, U. V., Demczuk, M., Xu, D., Ernst, M. K., ... & Lu, K. Q. (2023). Topical application of synthetic melanin promotes tissue repair.
NPJ Regenerative Medicine, 8(1), 61.
https://doi.org/10.1038/s41536-023-00331-1
Chakraborty, I., Redkar, P., Munjal, M., Kumar, S. S., & Rao, K. B. (2015). Isolation and characterization of pigment producing marine actinobacteria from mangrove soil and applications of bio-pigments.
Der Pharmacia Lettre, 7(4), 93-100.
https://www.scholarsresearchlibrary.com/journals/der-pharmacia-lettre/
D'Incecco, P., Dallavalle, S., Musso, L., Rosi, V., Sindaco, M., & Pellegrino, L. (2024). Formation of di-Tyrosine in pasteurized milk during shelf storage.
Food Chemistry, 435, 137566.
https://doi.org/10.1016/j.foodchem.2023.137566
El-Naggar, N. E. A., & El-Ewasy, S. M. (2017). Bioproduction, characterization, anticancer and antioxidant activities of extracellular melanin pigment produced by newly isolated microbial cell factories
Streptomyces glaucescens NEAE-H.
Scientific Reports, 7(1), 1-19.
https://doi.org/10.1038/srep42129
Eskandari, S., & Etemadifar, Z. (2021). Biocompatibility and radioprotection by newly characterized melanin pigment and its production from
Dietzia schimae NM3 in optimized whey medium by response surface methodology.
Annals of Microbiology, 71, 1-13.
https://doi.org/10.1186/s13213-021-01628-6
García-Molina, P., García-Molina, F., Teruel-Puche, J. A., Rodríguez-López, J. N., García-Cánovas, F., & Muñoz-Muñoz, J. L. (2022). Considerations about the kinetic mechanism of tyrosinase in its action on monophenols: A review.
Molecular Catalysis, 518, 112072.
https://doi.org/10.1016/j.mcat.2021.112072
Guo, X., Wu, X., Ma, H., Liu, H., & Luo, Y. (2023). Yeast: A platform for the production of L‐tyrosine derivatives.
Yeast, 40(5-6), 214-230.
https://doi.org/10.1002/yea.3850
Hazarika, S. N., & Thakur, D. (2020). Actinobacteria. In Beneficial Microbes in Agro-Ecology (pp. 443-476). Academic Press.
Irshad, G., Naz, F., Ghuffar, S., Khalid, A. R., Arif, S., Maqsood, A., ... & Din, R. U. (2023). Molecular studies of postharvest fungal peach fruit rots;
Fusarium sporotrichioides, Aspergillus niger, Aspergillus flavus, Penicillium chrysogenum and
Cladosporium pseudocladosporioides.
Pakistan Journal of Phytopathology, 35(2), 349-356.
https://doi.org/10.33866/phytopathol.035.02.0910
Lee, Y. K., Kim, H. W., Liu, C. L., & Lee, H. K. (2003). A simple method for DNA extraction from marine bacteria tht produce extracellular materials.
Journal of Microbiological Methods, 52(2), 245-250.
https://doi.org/10.1016/S0167-7012(02)00180-X
Liao, L., Su, S., Zhao, B., Fan, C., Zhang, J., Li, H., & Chen, B. (2019). Biosynthetic potential of a novel Antarctic actinobacterium Marisediminicola antarctica ZS314T revealed by genomic data mining and pigment characterization.
Marine Drugs, 17(7), 388.
https://doi.org/10.3390/md17070388
Lu, W., Shi, Y., Wang, R., Su, D., Tang, M., Liu, Y., & Li, Z. (2021). Antioxidant activity and healthy benefits of natural pigments in fruits: A review.
International Journal of Molecular Sciences, 22(9), 4945.
https://doi.org/10.3390/ijms22094945
Martín, J. F., Liras, P., & Sánchez, S. (2021). Modulation of gene expression in actinobacteria by translational modification of transcriptional factors and secondary metabolite biosynthetic enzymes.
Frontiers in Microbiology, 12, 630694.
https://doi.org/10.3389/fmicb.2021.630694
Mohammadi, M., Khaleghi, M., Shakeri, S., Hesni, M. A., Samandari-Bahraseman, M. R., & Dalvand, A. (2022). Isolation of Actinobacteria strains from environmental samples and assessment of their bioactivity.
Avicenna Journal of Clinical Microbiology and Infection, 9(1), 8-15.
https://doi.org/10.34172/ajcmi.2022.02
Morris, C. J., & Thompson, J. F. (1962). The isolation and characterization of γ-l-glutamyl-l-tyrosine and γ-l-glutamyl-l-phenylalanine from soybeans.
Biochemistry, 1(4), 706-709.
https://doi.org/10.1021/bi00910a026
Pavan, M. E., López, N. I., & Pettinari, M. J. (2020). Melanin biosynthesis in bacteria, regulation and production perspectives.
Applied Microbiology and Biotechnology, 104(4), 1357-1370.
https://doi.org/10.1007/s00253-019-10245-y
Putri, D. A., Astuti, R. I., & Wahyudi, A. T. (2024). The potency of yellow pigment extract from the marine bacterium
Pseudomonas oryzihabitans SAB E-3 as an antioxidant agent.
Biodiversitas: Journal of Biological Diversity, 25(6).
http://dx.doi.org/10.13057/biodiv/d250627
Rahaman, M. M., Hossain, R., Herrera‐Bravo, J., Islam, M. T., Atolani, O., Adeyemi, O. S., ... & Sharifi‐Rad, J. (2023). Natural antioxidants from some fruits, seeds, foods, natural products, and associated health benefits: An update.
Food Science & Nutrition, 11(4), 1657-1670.
https://doi.org/10.1002/fsn3.3217
Raval, K. M., Vaswani, P. S., & Majumder, D. R. (2012). Biotransformation of a single amino-acid L-tyrosine into a bioactive molecule L-DOPA.
The International Journal of Science and Research, 2, 2250-3153.
https://www.ijsrp.org/
Shahrokh, Z., Salimi, F., & Hamedi, J. (2022). Screening and molecular identification of tyrosinase-producing actinobacteria from soils of the Maranjab Desert, the Hampoeil Cave, and the Hormoz Island.
Journal of Microbial Biology, 11(41), 33-50.
https://doi.org/10.22108/bjm.2021.124762.1320
Sheefaa, M. I., & Sivaperumal, P. (2022). Antioxidant activities from melanin pigment produced by marine actinobacterium of
Streptomyces species.
Journal of Advanced Pharmaceutical Technology & Research, 13(Suppl 1), S84-S87.
https://doi.org/10.4103/japtr.japtr_338_22
Shivaveerakumar, S., & Hiremath, J. Isolation and biochemical characterization of potential isolates of Actinomycetes for the production of Tyrosinase from the campus of Davangere University.
(2019).
International Journal of Pharmacy and Biological Sciences, 9, 1550-1560.
https://doi.org/10.21276/ijpbs.2019.9.1.203
Zarkogianni, M., & Nikolaidis, N. (2016). Determination of sun protection factor (SPF) and stability of oil-in-water emulsions containing Greek red saffron (Crocus Sativus L.) as a main antisolar agent.
International Journal of Advanced Research in Chemical Science, 3(7), 1-7.
https://dx.doi.org/10.20431/2349-0403.0307001
Zheng, X., & Van Huystee, R. B. (1991). Oxidation of tyrosine by peroxidase isozymes derived from peanut suspension culture medium and by isolated cell walls.
Plant Cell, Tissue and Organ Culture, 25, 35-43.
https://doi.org/10.1007/BF00033910
Zhu, Y., Shang, X., Yang, L., Zheng, S., Liu, K., & Li, X. (2020). Purification, identification and properties of a new blue pigment produced from Streptomyces sp. A1013Y.
Food Chemistry, 308, 125600.
https://doi.org/10.1016/j.foodchem.2019.125600