Identification of the Genomics and Transcriptomics Regulators of the DNA Damage Response in Breast Cancer

Document Type : Research Article

Authors

1 Department of Cell and Molecular Biology, Faculty of Science, Semnan University, Semnan, Iran

2 Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Science, McMaster University, Hamilton, Canada

3 Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada

10.22080/jgr.2024.26741.1384

Abstract

Breast cancer is one of the most prevalent malignancies and the most common cancer in female patients. In recent years, the clinical utilization of a class of drugs called poly (ADP-ribose) polymerase inhibitors has been observed to be detrimental to cells that harbor defective DNA damage repair mechanisms. Implementation of these drugs entails a series of unprecedented challenges, including the development of drug resistance to this treatment strategy. Thus, it is essential to gain a better understanding of the mechanisms that regulate the DNA damage response to maximize the treatment efficacy in breast cancer patients and minimize unwanted side effects. In this study, through the utilization of single-cell- and bulk-level transcriptional data, we set out to identify molecules and molecular circuits associated with DNA damage response in breast cancer patients. By identifying differentially expressed genes in single-cell cancer cell populations inherently different in DNA damage response, further clustering bulk RNA-sequencing samples based on the expression of these genes, and performing network and enrichment analysis at the bulk level, we have characterized breast cancer samples based on their DNA damage response. Moreover, we have been able to identify a central network module whose members can serve as treatment targets and yield further insights into the mechanisms of drug resistance and DNA damage response in breast cancer. Overall, this study contributes to the characterization of the transcriptional circuits involved in the heterogeneity of DDR in breast cancer and provides candidate avenues for the investigation of potential therapeutic interventions.

Keywords

Main Subjects


Abuetabh, Y., Wu, H. H., Chai, C., Al Yousef, H., Persad, S., Sergi, C. M., & Leng, R. (2022). DNA damage response revisited: the p53 family and its regulators provide endless cancer therapy opportunities. Experimental and Molecular Medicine, 54(10), 1658-1669. https://www.nature.com/articles/s12276-022-00863-4
Agrawal, A., Balcı, H., Hanspers, K., Coort, S. L., Martens, M., Slenter, D. N., ... & Pico, A. R. (2024). WikiPathways 2024: next generation pathway database. Nucleic acids Research, 52(D1), D679-D689. https://doi.org/10.1093/nar/gkad960
Ai, D., Yao, J., Yang, F., Huo, L., Chen, H., Lu, W., ... & Ding, Q. (2021). TRPS1: a highly sensitive and specific marker for breast carcinoma, especially for triple-negative breast cancer. Modern Pathology, 34(4), 710-719. https://doi.org/10.1038/s41379-020-00692-8
Bai, P., Fan, T., Sun, G., Wang, X., Zhao, L., & Zhong, R. (2023). The dual role of DNA repair protein MGMT in cancer prevention and treatment. DNA Repair, 123, 103449. https://doi.org/10.1016/j.dnarep.2023.103449
Belli, C., Duso, B. A., Ferraro, E., & Curigliano, G. (2019). Homologous recombination deficiency in triple negative breast cancer. The Breast, 45, 15-21. https://doi.org/10.1016/j.breast.2019.02.007
Brambillasca, C. S., Henneman, L., de Ruiter, J., Drenth, A. P., & Jonkers, J. (2016). Abstract 889: Dissecting the role of MYC in BRCA1-associated breast cancer. Cancer Research, 76(14-Supplement), 889-889. https://doi.org/10.1158/1538-7445.AM2016-889
Burguin, A., Diorio, C., & Durocher, F. (2021). Breast cancer treatments: updates and new challenges. Journal of Personalized Medicine, 11(8), 808. https://doi.org/10.3390/jpm11080808
Campaner, S., & Amati, B. (2012). Two sides of the Myc-induced DNA damage response: from tumor suppression to tumor maintenance. Cell Division, 7, 1-10. https://link.springer.com/article/10.1186/1747-1028-7-6
Cancer Genome Atlas Network. (2012). Comprehensive molecular portraits of human breast tumours. Nature, 490(7418), 61-70.  https://doi.org/10.1038/nature11412
Choi, E.-H., & Kim, K. P. (2019). E2F1 facilitates DNA break repair by localizing to break sites and enhancing the expression of homologous recombination factors. Experimental and Molecular Medicine, 51(9), 1-12. https://www.nature.com/articles/s12276-019-0307-2
de Bruijn, I., Kundra, R., Mastrogiacomo, B., Tran, T. N., Sikina, L., Mazor, T., ... & Schultz, N. (2023). Analysis and visualization of longitudinal genomic and clinical data from the AACR project GENIE biopharma collaborative in cBioPortal. Cancer Research, 83(23), 3861-3867. https://doi.org/10.1158/0008-5472.CAN-23-0816
Dubrez, L. (2017). Regulation of E2F1 transcription factor by ubiquitin conjugation. International Journal of Molecular Sciences, 18(10), 2188. https://doi.org/10.3390/ijms18102188
Fouad, S., Hauton, D., & D'Angiolella, V. (2021). E2F1: cause and consequence of DNA replication stress. Frontiers in Molecular Biosciences, 7, 599332. https://doi.org/10.3389/fmolb.2020.599332
Gabay, M., Li, Y., & Felsher, D. W. (2014). MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harbor Perspectives in Medicine, 4(6), a014241. https://perspectivesinmedicine.cshlp.org/content/4/6/a014241.short
Han, H., Cho, J. W., Lee, S., Yun, A., Kim, H., Bae, D., ... & Lee, I. (2018). TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Research, 46(D1), D380-D386. https://doi.org/10.1093/nar/gkx1013
Hao, Y., Stuart, T., Kowalski, M. H., Choudhary, S., Hoffman, P., Hartman, A., ... & Satija, R. (2024). Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nature Biotechnology, 42(2), 293-304. https://www.nature.com/articles/s41587-023-01767-y
Herzog, T. J., Vergote, I., Gomella, L. G., Milenkova, T., French, T., Tonikian, R., ... & Hussain, M. (2023). Testing for homologous recombination repair or homologous recombination deficiency for poly (ADP-ribose) polymerase inhibitors: A current perspective. European Journal of Cancer, 179, 136-146. https://doi.org/10.1016/j.ejca.2022.10.021
Howard, F. M., & Olopade, O. I. (2021). Epidemiology of triple-negative breast cancer. The Cancer Journal, 27(1), 8-16. https://journals.lww.com/journalppo/abstract/2021/01000/epidemiology_of_triple_negative_breast_cancer__a.3.aspx
Hurlin, P. J. (2013). Control of vertebrate development by MYC. Cold Spring Harbor Perspectives in Medicine, 3(9), a014332. https://perspectivesinmedicine.cshlp.org/content/3/9/a014332.short
Korsunsky, I., Millard, N., Fan, J., Slowikowski, K., Zhang, F., Wei, K., Baglaenko, Y., Brenner, M., Loh, P., & Raychaudhuri, S. (2019). Fast, sensitive and accurate integration of single-cell data with Harmony. Nature Methods, 16(12), 1289–1296. https://www.nature.com/articles/s41592-019-0619-0
Lei, H., He, A., Jiang, Y., Ruan, M., & Han, N. (2022). Targeting DNA damage response as a potential therapeutic strategy for head and neck squamous cell carcinoma. Frontiers in Oncology, 12, 1031944. https://doi.org/10.3389/fonc.2022.1031944
Liu, P., Deng, X., Zhou, H., Xie, J., Kong, Y., Zou, Y., ... & Li, X. (2023). Multi-omics analyses unravel DNA damage repair-related clusters in breast cancer with experimental validation. Frontiers in Immunology, 14, 1297180. https://doi.org/10.3389/fimmu.2023.1297180
Liu, H., Liao, Y., Tang, M., Wu, T., Tan, D., Zhang, S., & Wang, H. (2018). Trps1 is associated with the multidrug resistance of lung cancer cell by regulating MGMT gene expression. Cancer Medicine, 7(5),1921-1932. https://doi.org/10.1002/cam4.1421
Liu, Y., & Kulesz-Martin, M. (2001). P53 protein at the hub of cellular DNA damage response pathways through sequence-specific and non-sequence-specific DNA binding. Carcinogenesis, 22(6), 851-860. https://doi.org/10.1093/carcin/22.6.851
Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 1-21. https://link.springer.com/article/10.1186/s13059-014-0550-8
Madden, S. K., de Araujo, A. D., Gerhardt, M., Fairlie, D. P., & Mason, J. M. (2021). Taking the Myc out of cancer: toward therapeutic strategies to directly inhibit c-Myc. Molecular Cancer, 20(1), 3. https://link.springer.com/article/10.1186/s12943-020-01291-6
Marei, H. E., Althani, A., Afifi, N., Hasan, A., Caceci, T., Pozzoli, G., ... & Cenciarelli, C. (2021). P53 signaling in cancer progression and therapy. Cancer Cell International, 21(1), 703. https://link.springer.com/article/10.1186/s12935-021-02396-8
Mylavarapu, S., Das, A., & Roy, M. (2018). Role of BRCA mutations in the modulation of response to platinum therapy. Frontiers in Oncology, 8, 16. https://doi.org/10.3389/fonc.2018.00016
Pham, M. M., Hinchcliff, E., Avila, M., & Westin, S. N. (2021). The clinical challenges, trials, and errors of combatting Poly(ADP-Ribose) polymerase inhibitors resistance. The Cancer Journal, 27(6), 491-500. https://journals.lww.com/journalppo/abstract/2021/11000/the_clinical_challenges,_trials,_and_errors_of.11.aspx
Sedeta, E. T., Jobre, B., & Avezbakiyev, B. (2023). Breast cancer: Global patterns of incidence, mortality, and trends. Journal of Clinical Oncology, 41(16-suppl), 10528-10528. https://doi.org/10.1200/JCO.2023.41.16_suppl.10528
Sheldon, L. A. (2017). Inhibition of E2F1 activity and cell cycle progression by arsenic via retinoblastoma protein. Cell Cycle, 16(21), 2058-2072. https://doi.org/10.1080/15384101.2017.1338221
Toh, M., & Ngeow, J. (2021). Homologous recombination deficiency: cancer predispositions and treatment implications. The Oncologist, 26(9), e1526-e1537. https://doi.org/10.1002/onco.13829
Tung, N., & Garber, J. E. (2022). PARP inhibition in breast cancer: progress made and future hopes. NPJ Breast Cancer, 8(1), 47. https://www.nature.com/articles/s41523-022-00411-3
Walerych, D., Napoli, M., Collavin, L., & Del Sal, G. (2012). The rebel angel: mutant p53 as the driving oncogene in breast cancer. Carcinogenesis, 33(11), 2007-2017. https://doi.org/10.1093/carcin/bgs232
Wang, Z., Jia, R., Wang, L., Yang, Q., Hu, X., Fu, Q., ... & Ren, Y. (2022). The emerging roles of Rad51 in cancer and its potential as a therapeutic target. Frontiers in Oncology, 12, 935593. https://doi.org/10.3389/fonc.2022.935593
Wooten, J., Mavingire, N., Damar, K., Loaiza‐Perez, A., & Brantley, E. (2023). Triumphs and challenges in exploiting poly (ADP-ribose) polymerase inhibition to combat triple-negative breast cancer. Journal of Cellular Physiology, 238(8), 1625-1640. https://doi.org/10.1002/jcp.31015
Wu, S. Z., Al-Eryani, G., Roden, D. L., Junankar, S., Harvey, K., Andersson, A., ... & Swarbrick, A. (2021). A single-cell and spatially resolved atlas of human breast cancers. Nature Genetics, 53(9), 1334-1347. https://www.nature.com/articles/s41588-021-00911-1
Xu, J., Chen, Y., & Olopade, O. I. (2010). MYC and breast cancer. Genes and Cancer, 1(6), 629-640. https://doi.org/10.1177/1947601910378691
Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A. H., Tanaseichuk, O., ... & Chanda, S. K. (2019). Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nature Communications, 10(1), 1523. https://www.nature.com/articles/s41467-019-09234-6