Antimicrobial and Antibiofilm Activity of 4-Benzylidene-2-methyl-oxazoline-5-one against Pathogen Bacteria

Document Type : Research Article

Authors

1 Department of Chemical Engineering, Sirjan University of Technology, Sirjan, Iran

2 Department of Chemistry, Shahid Bahonar University of Kerman, 76169 Kerman, Iran

3 Department of Biology, Shahid Bahonar University of Kerman, 76169 Kerman, Iran

Abstract

One of the major challenges in healthcare is the rise of antibiotic resistance, where bacteria have developed resistance to a wide range of commonly available antibiotics. These resilient bacteria pose a significant threat to public health, leading to severe illnesses and creating a substantial challenge for treatment. Therefore, the discovery of new antimicrobial agents is crucial in controlling the spread of infections caused by drug-resistant bacteria. This study focuses on the synthesis of oxazoline and investigates the antimicrobial and anti-biofilm properties of this compound named 4-benzylidene-2-methyl-oxazoline-5-one. The structure of the oxazoline compound was precisely characterized by 1H NMR, 13C NMR, and FT-IR. The antibacterial activity was assessed on S. aureus using the agar-well diffusion while the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values were determined to identify the concentration ranges with significant inhibitory effects. S. aureus is one of the most noticeable microorganisms in medical and clinical sciences, especially nosocomial infections. Additionally, the study evaluated the compound's impact on biofilm formation and the expression of the icaA gene. The results from the MIC and MBC testing demonstrated that the compound exhibits both bacteriostatic and bactericidal effects on both Gram-positive and Gram-negative bacteria, as well as yeast. Furthermore, the presence of this antibacterial compound led to a reduction in icaA gene expression. 4-Benzylidene-2-methyl-oxazoline-5-one displayed significant antimicrobial activity and hindered biofilm formation. Moreover, it was observed that 4-benzylidene-2-methyl-oxazoline-5-one induced cell death through its toxic effects on MCF-7 cells. When it was tested at concentrations of 0.01, 0.1, and 1 mg/ml this compound exhibited cytotoxic effects and significantly decreased cell viability.

Keywords

Main Subjects


Abhale, Y. K., Sasane, A. V., Chavan, A. P., Shekh, S. H., Deshmukh, K. K., Bhansali, S., ... & Mhaske, P. C. (2017). Synthesis and antimycobacterial screening of new thiazolyl-oxazole derivatives. European Journal of Medicinal Chemistry, 132, 333-340. https://doi.org/10.1016/j.ejmech.2017.03.065
Al-Mulla, A. (2017). A review: biological importance of heterocyclic compounds. Der Pharma Chemica, 9 (13), 141-147. https://www.derpharmachemica.com/
Apostol, T. V., Chifiriuc, M. C., Nitulescu, G. M., Olaru, O. T., Barbuceanu, S. F., Socea, L. I., ... & Marutescu, L. G. (2022). In Silico and in vitro assessment of antimicrobial and antibiofilm activity of some 1, 3-Oxazole-Based compounds and their isosteric analogues. Applied Sciences, 12(11), 5571. https://doi.org/10.3390/app12115571
Bala, S., Saini, M., & Kamboj, S. (2011). Methods for synthesis of Oxazolones: a review. International Journal of ChemTech Research, 3(3), 1102-1118. https://sphinxsai.com/chemtech.php
Bridier, A., Briandet, R., Thomas, V., & Dubois-Brissonnet, F. (2011). Resistance of bacterial biofilms to disinfectants: a review. Biofouling, 27(9), 1017-1032. https://doi.org/10.1080/08927014.2011.626899
CLSI. (2018). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. CLSI standard M07. Wayne, PA: Clinical and Laboratory Standards Institute, USA.
Denizot, F., & Lang, R. (1986). Lang, Rapid colorimetric assay for cell growth and survival: modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. Journal of Immunological Methods, 89(2), 271-277. https://doi.org/10.1016/0022-1759(86)90368-6
Dobretsov, S., Abed, R. M. M., & Teplitski, M. (2013). Mini-review: inhibition of biofouling by marine microorganisms. Biofouling, 29(4), 423-441. https://doi.org/10.1080/08927014.2013.776042
Fawzi, M., Bimoussa, A., Laamari, Y., Oussidi, A. N. A., Oubella, A., Ketatni, E. M., ... & Auhmani, A. (2023). New (S)-verbenone-isoxazoline-1, 3, 4-thiadiazole hybrids: synthesis, anticancer activity and apoptosis-inducing effect. Future Medicinal Chemistry, 15(17), 1603-1619. https://doi.org/10.4155/fmc-2023-0173
Flemming, H. C., & Wuertz, S. (2019). Bacteria and Archaea on Earth and Their Abundance in Biofilms. Nature Reviews Microbiology, 17 (4) 247-260. https://doi.org/10.1038/s41579-019-0158-9.
Gallego-Hernandez, A. L., DePas, W. H., Park, J. H., Teschler, J. K., Hartmann, R., Jeckel, H., ... & Yildiz, F. H. (2020). Upregulation of virulence genes promotes Vibrio cholerae biofilm hyperinfectivity. Proceedings of the National Academy of Sciences, 117(20), 11010-11017. https://doi.org/10.1073/pnas.1916571117
Herbst, R. M., Shemin, D. (1939). Acetylglycine [Aceturic acid]. In Johnson JR, ed. Organic Synthesis, 19, New York, Wiley, 4.
Huang, S. S., Zhu, B. B., Wang, K. H., Yu, M., Wang, Z. W., Li, Y., ... & Wang, Q. M. (2022). Design, synthesis, and insecticidal and fungicidal activities of quaternary ammonium salt derivatives of a triazolyphenyl isoxazoline insecticide. Pest Management Science, 78(5), 2011-2021. https://doi.org/10.1002/ps.6824.
Kowalska-Krochmal, B., & Dudek-Wicher, R. (2021). The minimum inhibitory concentration of antibiotics: methods, interpretation, clinical relevance. Pathogens, 10(2), 165. https://doi.org/10.3390/pathogens10020165
Kırmusaoğlu, S. (Ed.). (2019). Antimicrobials, antibiotic resistance, antibiofilm strategies and activity methods. BoD-Books on Demand. https://doi.org/10.5772/intechopen.78751
Meier, A., Tsaloglou, N. M., Mowlem, M. C., Keevil, C. W., & Connelly, D. P. (2013). Hyperbaric biofilms on engineering surfaces formed in the deep sea. Biofouling, 29(9), 1029-1042. https://doi.org/10.1080/08927014.2013.824967
Mota, F. V. B., de Araújo Neta, M. S., de Souza Franco, E., Bastos, I. V. G. A., da Araújo, L. C. C., da Silva, S. C., ... & da Silva, T. G. (2019). Evaluation of anti-inflammatory activity and molecular docking study of new aza-bicyclic isoxazoline acylhydrazone derivatives. Medchemcomm, 10(11), 1916-1925. https://doi.org/10.1039/C9MD00276F
Otter, J. A., Patel, A., Cliff, P. R., Halligan, E. P., Tosas, O., & Edgeworth, J. D. (2013). Selection for qacA carriage in CC22, but not CC30, methicillin-resistant Staphylococcus aureus bloodstream infection isolates during a successful institutional infection control programme. Journal of Antimicrobial Chemotherapy, 68(5), 992-999. https://doi.org/10.1093/jac/dks500
Otto, M. (2014). Staphylococcus aureus toxins. Current Opinion in Microbiology, 17, 32-37. https://doi.org/10.1016/j.mib.2013.11.004
Parvekar, P., Palaskar, J., Metgud, S., Maria, R., & Dutta, S. (2020). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus. Biomaterial Investigations in Dentistry, 7(1), 105-109. https://doi.org/10.1080/26415275.2020.1796674
Pasha, M. A., Jayashankara, V. P., Venugopala, K. N., & Rao, G. K. (2007). Zinc Oxide (ZnO): an efficient catalyst for the synthesis of 4-arylmethylidene-2-phenyl-5-(4H)-oxazolones having antimicrobial activity. Journal of Pharmacology and Toxicology, 2(3), 264-270. https://doi.org/10.3923/jpt.2007.264.270
Prosser, G. A., & de Carvalho, L. P. S. (2013). Kinetic mechanism and inhibition of Mycobacterium Tuberculosis D-alanine: D-alanine ligase by the antibiotic D-cycloserine. The FEBS Journal, 280(4), 1150-1166. https://doi.org/10.1111/febs.12108
Rachid, S., Ohlsen, K., Witte, W., Hacker, J., & Ziebuhr, W. (2000). Effect of subinhibitory antibiotic concentrations on polysaccharide intercellular adhesin expression in biofilm-forming Staphylococcus epidermidis. Antimicrobial Agents and Chemotherapy, 44(12), 3357-3363. https://doi.org/10.1128/aac.44.12.3357-3363.2000
Redelman, C. V., Maduakolam, C., & Anderson, G. G. (2012). Alcohol treatment enhances Staphylococcus aureus biofilm development. FEMS Immunology & Medical Microbiology, 66(3), 411-418. https://doi.org/10.1111/1574-695X.12005
Sedenkova, K. N., Andriasov, K. S., Eremenko, M. G., Grishin, Y. K., Alferova, V. A., Baranova, A. A., ... & Averina, E. B. (2022). Bicyclic isoxazoline derivatives: synthesis and evaluation of biological activity. Molecules, 27(11), 3546. https://doi.org/10.3390/molecules27113546
Stewart, P. S., & Bjarnsholt, T. (2020). Risk factors for chronic biofilm-related infection associated with implanted medical devices. Clinical Microbiology Infection, 26(8), 1034-1038. https://doi.org/10.1016/j.cmi.2020.02.027
Tandel, R.C., & Mammen, D. (2008). Synthesis and study of some compounds containing oxazolone ring, showing biological activity. Indian Journal of Chemistry, 47B (6), 932-937. http://op.niscair.res.in/
Torlak, E., Korkut, E., Uncu, A. T., & Sener, Y. (2017). Biofilm formation by Staphylococcus aureus isolates from a dental clinic in Konya, Turkey. Journal of Infection and Public Health, 10(6), 809-813. https://doi.org/10.1016/j.jiph.2017.01.004
Trefzger, O. S., Barbosa, N. V., Scapolatempo, R. L., das Neves, A. R., Ortale, M. L., Carvalho, D. B., ... & Baroni, A. C. (2020). Design, synthesis, antileishmanial, and antifungal biological evaluation of novel 3, 5‐disubstituted isoxazole compounds based on 5‐nitrofuran scaffolds. Archiv der Pharmazie, 353(2), e1900241. https://doi.org/10.1002/ardp.201900241
Wang, X., Hu, Q., Tang, H., & Pan, X. (2023). Isoxazole/Isoxazoline skeleton in the structural modification of natural products: a review. Pharmaceuticals, 16(2), 228. https://doi.org/10.3390/ph16020228