Geometric Morphometric Study of Honeybee (Apis mellifera L. 1758) Populations in Central Iran

Document Type : Research Article

Authors

1 Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran

2 Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, IRAN

Abstract

The honeybee is one of the most important insect species for mankind due to its role in the pollination of crops and products that it makes. Western honeybee Apis mellifera is a cosmopolitan species due to human beekeeping practices. The geometric morphometric method was used to investigate the differences in wing size and shape of worker honeybee populations collected from 8 locations and apiaries from Isfahan and Chaharmahal & Bakhtiari provinces. Fore and hindwing shape and size variations were investigated based on 16 homologous landmark coordinates. In terms of wing size, data showed that Khansar's honeybees have the largest and Shahrekord honeybees have the smallest fore and hindwings. In terms of wing shape, more than half of the pairwise compared populations showed significant differences in both fore and hindwings. Also, allometry is not seen, meaning that variations in wing size and wing shape were independent from one another. This study provides information on the diversity of honeybee populations in the study area.

Keywords

Main Subjects


Abed, F., Bachir-Bouiadjra, B., Dahloum, L., Yakubu, A., Haddad, A., & Homrani, A. (2021). Procruste analysis of forewing shape in two endemic honeybee subspecies Apis mellifera intermissa and A. m. sahariensis from the Northwest of Algeria. Biodiversitas Journal of Biological Diversity, 22(1), 154-164. https://doi.org/10.13057/BIODIV/D220121
Aglagane, A., Tofilski, A., Er-Rguibi, O., Laghzaoui, E. M., Kimdil, L., El Mouden, E. H., ... & Aourir, M. (2022). Geographical variation of honey bee (Apis mellifera L. 1758) populations in South-Eastern Morocco: a geometric morphometric analysis. Insects, 13(3), 288. https://doi.org/10.3390/insects13030288
Arias, M. C., & Sheppard, W. S. (2005). Phylogenetic relationships of honey bees (Hymenoptera: Apinae: Apini) inferred from nuclear and mitochondrial DNA sequence data. Molecular Phylogenetics and Evolution, 37(1), 25-35. https://doi.org/10.1016/J.YMPEV.2005.02.017
Boulhasani, S., Rajabi Maham, H., & Naderi, M. (2018). Wing geometric-morphometric analysis to determine the population diversity of Iranian honey bee (Apis mellifera meda) in Northwest of Iran. Journal of Animal Research, 31(3), 245-254. https://animal.ijbio.ir/article_1398.html
Buala, S., & Sopaladawan, P. N. (2022). Geometric morphometric analysis of forewings of Apis mellifera Linnaeus, 1758 (Hymenoptera: Apidae) populations in Thailand. Tropical Natural History, 22(1), 56-66. https://li01.tci-thaijo.org/index.php/tnh/article/view/256705
Büchler, R., Costa, C., Hatjina, F., Andonov, S., Meixner, M. D., Conte, Y. L., ... & Wilde, J. (2014). The influence of genetic origin and its interaction with environmental effects on the survival of Apis mellifera L. colonies in Europe. Journal of Apicultural Research, 53(2), 205-214. https://doi.org/10.3896/IBRA.1.53.2.03
Bustamante, T., Baiser, B., & Ellis, J. D. (2020). Comparing classical and geometric morphometric methods to discriminate between the South African honey bee subspecies Apis mellifera scutellata and Apis mellifera capensis (Hymenoptera: Apidae). Apidologie, 51, 123-136. https://doi.org/10.1007/s13592-019-00651-6
Bustamante, T., Fuchs, S., Grünewald, B., & Ellis, J. D. (2021). A geometric morphometric method and web application for identifying honey bee species (Apis spp.) using only forewings. Apidologie, 52(3), 697-706. https://doi.org/10.1007/s13592-021-00857-7
Calderone, N. W. (2012). Insect pollinated crops, insect pollinators and US agriculture: trend analysis of aggregate data for the period 1992-2009. PloS One, 7(5), e37235.https://doi.org/10.1371/journal.pone.0037235
Cardinal, S., & Danforth, B. N. (2013). Bees diversified in the age of eudicots. Proceedings of the Royal Society B: Biological Sciences, 280(1755), 20122686.https://doi.org/10.1098/RSPB.2012.2686
Charistos, L., Hatjina, F., Bouga, M., Mladenovic, M., & Maistros, A. D. (2014). Morphological discrimination of Greek honey bee populations based on geometric morphometrics analysis of wing shape. Journal of Apicultural Science, 58(1), 75-84. https://doi.org/10.2478/jas-2014-0007
Dadgostar, S., Delkash Roudsari, S., Nozari, J., Tahmasbi, G., & Hosseini Naveh, V. (2020a). Comparison between natives honey bee (Apis mellifera meda) and carniolan hybrid races (Apis mellifera carnica) in Hamedan province. Iranian Journal of Plant Protection Science, 50(2), 187-195. https://doi.org/10.22059/ijpps.2019.249277.1006822
Dadgostar, R., Nozari, J., Tahmasbi, G. (2020b). Wing characters for morphological study on the honey bee (Apis mellifera L.) populations among six provinces of Iran. Arthropods, 9(4), 129- 138. http://www.iaees.org/publications/journals/arthropods/online-version.asp
De la Rúa, P., Jaffé, R., Dall'Olio, R., Muñoz, I., & Serrano, J. (2009). Biodiversity, conservation and current threats to European honeybees. Apidologie, 40(3), 263-284. https://doi.org/10.1051/APIDO/2009027
Dillon, M. E., & Lozier, J. D. (2019). Adaptation to the abiotic environment in insects: the influence of variability on ecophysiology and evolutionary genomics. Current Opinion in Insect Science, 36, 131-139. https://doi.org/10.1016/j.cois.2019.09.003
Dutech, C., Sork, V. L., Irwin, A. J., Smouse, P. E., & Davis, F. W. (2005). Gene flow and fine‐scale genetic structure in a wind‐pollinated tree species, Quercus lobata (Fagaceaee). American Journal of Botany, 92(2), 252-261. https://doi.org/10.3732/ajb.92.2.252
Engel, M. S. (1999). The taxonomy of recent and fossil honey bees (Hymenoptera: Apidae; Apis). Journal of Hymenoptera Research, 8(2),165-196. http://hdl.handle.net/1808/16476
Forsman, A. (2014). Effects of genotypic and phenotypic variation on establishment are important for conservation, invasion, and infection biology. Proceedings of the National Academy of Sciences, 111(1), 302-307. https://doi.org/10.1073/pnas.1317745111
Fortune Business Insights. (2022). Honey Market Size, Share | Global Industry Trends [2022-2029]-Retrieved March 10, 2023 (pp. 1-213).
García, C. A. Y., Rodrigues, P. J., Tofilski, A., Elen, D., McCormak, G. P., Oleksa, A., ... & Pinto, M. A. (2022). Using the software DeepWings© to classify honey bees across Europe through wing geometric morphometrics. Insects, 13(12), 1132. https://doi.org/10.3390/INSECTS13121132
Hammer, Ø., & Harper, D. A. (2001). Past: paleontological statistics software package for educaton and data anlysis. Palaeontologia electronica, 4(1), 1. http://palaeo-electronica.org/2001_1/past/issue1_01.htm
Han, F., Wallberg, A., & Webster, M. T. (2012). From where did the Western honeybee (Apis mellifera) originate? Ecology and Evolution, 2(8), 1949-1957. https://doi.org/10.1002/ECE3.312
Henriques, D., Chávez-Galarza, J., SG Teixeira, J., Ferreira, H., J. Neves, C., Francoy, T. M., & Pinto, M. A. (2020). Wing geometric morphometrics of workers and drones and single nucleotide polymorphisms provide similar genetic structure in the Iberian honey bee (Apis mellifera iberiensis). Insects, 11(2), 89. https://doi.org/10.3390/insects11020089
Hung, K. L. J., Kingston, J. M., Albrecht, M., Holway, D. A., & Kohn, J. R. (2018). The worldwide importance of honey bees as pollinators in natural habitats. Proceedings of the Royal Society B: Biological Sciences, 285(1870), 20172140. https://doi.org/10.1098/RSPB.2017.2140
Ilyasov, R. A., Lee, M. L., Takahashi, J. I., Kwon, H. W., & Nikolenko, A. G. (2020). A revision of subspecies structure of western honey bee Apis mellifera. Saudi Journal of Biological Sciences, 27(12), 3615-3621. https://doi.org/10.1016/J.SJBS.2020.08.001
Kane, T. R., & Faux, C. M. (2021). Honey bee medicine for the veterinary practitioner. John Wiley & Sons. https://doi.org/10.1002/9781119583417
Khalifa, S. A., Elshafiey, E. H., Shetaia, A. A., El-Wahed, A. A. A., Algethami, A. F., Musharraf, S. G., ... & El-Seedi, H. R. (2021). Overview of bee pollination and its economic value for crop production. Insects, 12(8), 688. https://doi.org/10.3390/INSECTS12080688
Klingenberg, C. P. (2011). MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources, 11(2), 353-357. https://doi.org/10.1111/J.1755-0998.2010.02924.X
Kükrer, M., Kence, M., & Kence, A. (2021). Honey bee diversity is swayed by migratory beekeeping and trade despite conservation practices: genetic evidence for the impact of anthropogenic factors on population structure. Frontiers in Ecology and Evolution, 9, 556816.https://doi.org/10.3389/FEVO.2021.556816/BIBTEX
Masaquiza, D., Ferrán, M. O., Guamán, S., Naranjo, E., Vaca, M., Curbelo, L. M., & Arenal, A. (2023). Geometric morphometric analysis of wing shape to identify populations of Apis mellifera in Camagüey, Cuba. Insects, 14(3), 306. https://doi.org/10.3390/insects14030306
Ndungu, N., Vereecken, N. J., Gerard, M., Kariuki, S., Kati, L. K., Youbissi, A., ... & Nkoba, K. (2023). Can the shape of the wing help in the identification of African stingless bee species? (Hymenoptera: Apidae: Meliponini) wing geometric morphometrics: a tool for african stingless bee taxonomy. International Journal of Tropical Insect Science, 43(2), 749-759. https://doi.org/10.1007/s42690-023-00980-1
Nowierski, R. M. (2021). Pollinators at a Crossroads, Retrieved March 10, 2023. In USDA.
Parichehreh Dizji, S., Nadali, R., & Babayi, M. (2017). Study on some morphological characteristics of the Iranian race honey bee Apis mellifera meda (Hymenoptera, Apidae) in north of Iran. Plant Protection, 39(4), 79-91. https://doi.org/10.22055/ppr.2016.12485
Rader, R., Bartomeus, I., Garibaldi, L. A., Garratt, M. P., Howlett, B. G., Winfree, R., ... & Woyciechowski, M. (2016). Non-bee insects are important contributors to global crop pollination. Proceedings of the National Academy of Sciences, 113(1), 146-151. https://doi.org/10.1073/pnas.1517092112
Rahimi, A., Mirmoayedi, A., Kahrizi, D., Zarei, L., & Jamali, S. (2018). Genetic variation in Iranian honey bees, Apis mellifera meda Skorikow, 1829, (Hymenoptera: Apidae) inferred from PCR-RFLP analysis of two mtDNA gene segments (COI and 16S rDNA). Sociobiology, 65(3), 482-490. https://doi.org/10.13102/sociobiology.v65i3.2876
Rahimi, A., Mirmoayedi, A., Kahrizi, D., Zarei, L., & Jamali, S. (2016). Genetic diversity of Iranian honey bee (Apis mellifera meda Skorikow, 1829) populations based on ISSR markers. Cellular and Molecular Biology, 62(4), 53-58. https://doi.org/10.14715/cmb/2016.62.4.10
Rahimi, A., Mirmoayedi, A., Kahrizi, D., Zarei, L., & Jamali, S. (2022). Molecular genetic diversity and population structure of Iranian honey bee (Apis mellifera meda) populations: implications for breeding and conservation. Journal of Plant Diseases and Protection, 129(6), 1331-1342. https://doi.org/10.1007/S41348-022-00657-W/METRICS
Rebelo, A. R., Fagundes, J. M., Digiampietri, L. A., Francoy, T. M., & Biscaro, H. H. (2021). A fully automatic classification of bee species from wing images. Apidologie, 1-15. https://doi.org/10.1007/s13592-021-00887-1
Requier, F., Garnery, L., Kohl, P. L., Njovu, H. K., Pirk, C. W., Crewe, R. M., & Steffan-Dewenter, I. (2019). The conservation of native honey bees is crucial. Trends in Ecology and Evolution, 34(9), 789-798. https://doi.org/10.1016/J.TREE.2019.04.008
Rodrigues, P. J., Gomes, W., & Pinto, M. A. (2022). DeepWings©: automatic wing geometric morphometrics classification of honey bee (Apis mellifera) subspecies using deep learning for detecting landmarks. Big Data and Cognitive Computing, 6(3), 70. https://doi.org/10.3390/bdcc6030070
Rohlf. F. James. (2000). NTSYSpc Numerical Taxonomy and Multivariate Analysis System, version 2.02e. Exeter Software, Setauket, NY.
Rohlf, F. J. (2015). The tps series of software. Hystrix 26: 9-12. https://doi.org/10.4404/hystrix-26.1-11264
Ruttner, F. (1988). Biogeography and Taxonomy of Honey Bees. Springer-Verlag Berlin Heidelberg GmbH. https://doi.org/10.1016/0169-5347(89)90176-6
Salehi, S., & Nazemi-Rafie, J. (2020). Discrimination of Iranian honeybee populations (Apis mellifera meda) from commercial subspecies of Apis mellifera L. using morphometric and genetic methods. Journal of Asia-Pacific Entomology, 23(2), 591-598. https://doi.org/10.1016/J.ASPEN.2020.04.009
Santoso, M. A. D., Juliandi, B., & Raffiudin, R. (2018, October). Honey bees species differentiation using geometric morphometric on wing venations. Earth and Environmental Science, 197 (1), 012015. https://doi.org/10.1088/1755-1315/197/1/012015
Sexton, J. P., Hangartner, S. B., & Hoffmann, A. A. (2014). Genetic isolation by environment or distance: which pattern of gene flow is most common? Evolution, 68(1), 1-15.https://doi.org/10.1111/evo.12258
Slatkin, M. (1993). Isolation by distance in equilibrium and non-equilibrium populations. Evolution, 47(1), 264-279. https://doi.org/10.2307/2410134
Somero, G. N. (2012). The physiology of global change: linking patterns to mechanisms. Annual Review of Marine Science, 4, 39-61. https://doi.org/10.1146/annurev-marine-120710-100935
Tahmasebi, G. H., Ebadi, R., Esmaili, M., & Kambousia, J. (1998). Morphological study of honeybee (Apis mellifera L.) in Iran. Journal of Water and Soil Science, 2(1), 89-101. https://jcpp.iut.ac.ir/article-1-268-en.html
Wang, I. J., & Bradburd, G. S. (2014). Isolation by environment. Molecular Ecology, 23(23), 5649-5662. https://doi.org/10.1111/mec.12938
Wang, I. J., & Summers, K. (2010). Genetic structure is correlated with phenotypic divergence rather than geographic isolation in the highly polymorphic strawberry poison-dart frog. Molecular Ecology, 19(3), 447-458. https://doi.org/10.1111/j.1365-294X.2009.04465.x
Wright, S. (1943). Isolation by distance. Genetics, 28(2), 114-138. https://doi.org/10.1093/GENETICS/28.2.114