Geometric Morphometric Study of Honeybee (Apis mellifera L. 1758) Populations in Central Iran

Document Type : Research Article


1 Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran

2 Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, IRAN


The honeybee is one of the most important insect species for mankind due to its role in the pollination of crops and products that it makes. Western honeybee Apis mellifera is a cosmopolitan species due to human beekeeping practices. The geometric morphometric method was used to investigate the differences in wing size and shape of worker honeybee populations collected from 8 locations and apiaries from Isfahan and Chaharmahal & Bakhtiari provinces. Fore and hindwing shape and size variations were investigated based on 16 homologous landmark coordinates. In terms of wing size, data showed that Khansar's honeybees have the largest and Shahrekord honeybees have the smallest fore and hindwings. In terms of wing shape, more than half of the pairwise compared populations showed significant differences in both fore and hindwings. Also, allometry is not seen, meaning that variations in wing size and wing shape were independent from one another. This study provides information on the diversity of honeybee populations in the study area.


Main Subjects

Abed, F., Bachir-Bouiadjra, B., Dahloum, L., Yakubu, A., Haddad, A., & Homrani, A. (2021). Procruste analysis of forewing shape in two endemic honeybee subspecies Apis mellifera intermissa and A. m. sahariensis from the Northwest of Algeria. Biodiversitas Journal of Biological Diversity, 22(1), 154-164.
Aglagane, A., Tofilski, A., Er-Rguibi, O., Laghzaoui, E. M., Kimdil, L., El Mouden, E. H., ... & Aourir, M. (2022). Geographical variation of honey bee (Apis mellifera L. 1758) populations in South-Eastern Morocco: a geometric morphometric analysis. Insects, 13(3), 288.
Arias, M. C., & Sheppard, W. S. (2005). Phylogenetic relationships of honey bees (Hymenoptera: Apinae: Apini) inferred from nuclear and mitochondrial DNA sequence data. Molecular Phylogenetics and Evolution, 37(1), 25-35.
Boulhasani, S., Rajabi Maham, H., & Naderi, M. (2018). Wing geometric-morphometric analysis to determine the population diversity of Iranian honey bee (Apis mellifera meda) in Northwest of Iran. Journal of Animal Research, 31(3), 245-254.
Buala, S., & Sopaladawan, P. N. (2022). Geometric morphometric analysis of forewings of Apis mellifera Linnaeus, 1758 (Hymenoptera: Apidae) populations in Thailand. Tropical Natural History, 22(1), 56-66.
Büchler, R., Costa, C., Hatjina, F., Andonov, S., Meixner, M. D., Conte, Y. L., ... & Wilde, J. (2014). The influence of genetic origin and its interaction with environmental effects on the survival of Apis mellifera L. colonies in Europe. Journal of Apicultural Research, 53(2), 205-214.
Bustamante, T., Baiser, B., & Ellis, J. D. (2020). Comparing classical and geometric morphometric methods to discriminate between the South African honey bee subspecies Apis mellifera scutellata and Apis mellifera capensis (Hymenoptera: Apidae). Apidologie, 51, 123-136.
Bustamante, T., Fuchs, S., Grünewald, B., & Ellis, J. D. (2021). A geometric morphometric method and web application for identifying honey bee species (Apis spp.) using only forewings. Apidologie, 52(3), 697-706.
Calderone, N. W. (2012). Insect pollinated crops, insect pollinators and US agriculture: trend analysis of aggregate data for the period 1992-2009. PloS One, 7(5), e37235.
Cardinal, S., & Danforth, B. N. (2013). Bees diversified in the age of eudicots. Proceedings of the Royal Society B: Biological Sciences, 280(1755), 20122686.
Charistos, L., Hatjina, F., Bouga, M., Mladenovic, M., & Maistros, A. D. (2014). Morphological discrimination of Greek honey bee populations based on geometric morphometrics analysis of wing shape. Journal of Apicultural Science, 58(1), 75-84.
Dadgostar, S., Delkash Roudsari, S., Nozari, J., Tahmasbi, G., & Hosseini Naveh, V. (2020a). Comparison between natives honey bee (Apis mellifera meda) and carniolan hybrid races (Apis mellifera carnica) in Hamedan province. Iranian Journal of Plant Protection Science, 50(2), 187-195.
Dadgostar, R., Nozari, J., Tahmasbi, G. (2020b). Wing characters for morphological study on the honey bee (Apis mellifera L.) populations among six provinces of Iran. Arthropods, 9(4), 129- 138.
De la Rúa, P., Jaffé, R., Dall'Olio, R., Muñoz, I., & Serrano, J. (2009). Biodiversity, conservation and current threats to European honeybees. Apidologie, 40(3), 263-284.
Dillon, M. E., & Lozier, J. D. (2019). Adaptation to the abiotic environment in insects: the influence of variability on ecophysiology and evolutionary genomics. Current Opinion in Insect Science, 36, 131-139.
Dutech, C., Sork, V. L., Irwin, A. J., Smouse, P. E., & Davis, F. W. (2005). Gene flow and fine‐scale genetic structure in a wind‐pollinated tree species, Quercus lobata (Fagaceaee). American Journal of Botany, 92(2), 252-261.
Engel, M. S. (1999). The taxonomy of recent and fossil honey bees (Hymenoptera: Apidae; Apis). Journal of Hymenoptera Research, 8(2),165-196.
Forsman, A. (2014). Effects of genotypic and phenotypic variation on establishment are important for conservation, invasion, and infection biology. Proceedings of the National Academy of Sciences, 111(1), 302-307.
Fortune Business Insights. (2022). Honey Market Size, Share | Global Industry Trends [2022-2029]-Retrieved March 10, 2023 (pp. 1-213).
García, C. A. Y., Rodrigues, P. J., Tofilski, A., Elen, D., McCormak, G. P., Oleksa, A., ... & Pinto, M. A. (2022). Using the software DeepWings© to classify honey bees across Europe through wing geometric morphometrics. Insects, 13(12), 1132.
Hammer, Ø., & Harper, D. A. (2001). Past: paleontological statistics software package for educaton and data anlysis. Palaeontologia electronica, 4(1), 1.
Han, F., Wallberg, A., & Webster, M. T. (2012). From where did the Western honeybee (Apis mellifera) originate? Ecology and Evolution, 2(8), 1949-1957.
Henriques, D., Chávez-Galarza, J., SG Teixeira, J., Ferreira, H., J. Neves, C., Francoy, T. M., & Pinto, M. A. (2020). Wing geometric morphometrics of workers and drones and single nucleotide polymorphisms provide similar genetic structure in the Iberian honey bee (Apis mellifera iberiensis). Insects, 11(2), 89.
Hung, K. L. J., Kingston, J. M., Albrecht, M., Holway, D. A., & Kohn, J. R. (2018). The worldwide importance of honey bees as pollinators in natural habitats. Proceedings of the Royal Society B: Biological Sciences, 285(1870), 20172140.
Ilyasov, R. A., Lee, M. L., Takahashi, J. I., Kwon, H. W., & Nikolenko, A. G. (2020). A revision of subspecies structure of western honey bee Apis mellifera. Saudi Journal of Biological Sciences, 27(12), 3615-3621.
Kane, T. R., & Faux, C. M. (2021). Honey bee medicine for the veterinary practitioner. John Wiley & Sons.
Khalifa, S. A., Elshafiey, E. H., Shetaia, A. A., El-Wahed, A. A. A., Algethami, A. F., Musharraf, S. G., ... & El-Seedi, H. R. (2021). Overview of bee pollination and its economic value for crop production. Insects, 12(8), 688.
Klingenberg, C. P. (2011). MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources, 11(2), 353-357.
Kükrer, M., Kence, M., & Kence, A. (2021). Honey bee diversity is swayed by migratory beekeeping and trade despite conservation practices: genetic evidence for the impact of anthropogenic factors on population structure. Frontiers in Ecology and Evolution, 9, 556816.
Masaquiza, D., Ferrán, M. O., Guamán, S., Naranjo, E., Vaca, M., Curbelo, L. M., & Arenal, A. (2023). Geometric morphometric analysis of wing shape to identify populations of Apis mellifera in Camagüey, Cuba. Insects, 14(3), 306.
Ndungu, N., Vereecken, N. J., Gerard, M., Kariuki, S., Kati, L. K., Youbissi, A., ... & Nkoba, K. (2023). Can the shape of the wing help in the identification of African stingless bee species? (Hymenoptera: Apidae: Meliponini) wing geometric morphometrics: a tool for african stingless bee taxonomy. International Journal of Tropical Insect Science, 43(2), 749-759.
Nowierski, R. M. (2021). Pollinators at a Crossroads, Retrieved March 10, 2023. In USDA.
Parichehreh Dizji, S., Nadali, R., & Babayi, M. (2017). Study on some morphological characteristics of the Iranian race honey bee Apis mellifera meda (Hymenoptera, Apidae) in north of Iran. Plant Protection, 39(4), 79-91.
Rader, R., Bartomeus, I., Garibaldi, L. A., Garratt, M. P., Howlett, B. G., Winfree, R., ... & Woyciechowski, M. (2016). Non-bee insects are important contributors to global crop pollination. Proceedings of the National Academy of Sciences, 113(1), 146-151.
Rahimi, A., Mirmoayedi, A., Kahrizi, D., Zarei, L., & Jamali, S. (2018). Genetic variation in Iranian honey bees, Apis mellifera meda Skorikow, 1829, (Hymenoptera: Apidae) inferred from PCR-RFLP analysis of two mtDNA gene segments (COI and 16S rDNA). Sociobiology, 65(3), 482-490.
Rahimi, A., Mirmoayedi, A., Kahrizi, D., Zarei, L., & Jamali, S. (2016). Genetic diversity of Iranian honey bee (Apis mellifera meda Skorikow, 1829) populations based on ISSR markers. Cellular and Molecular Biology, 62(4), 53-58.
Rahimi, A., Mirmoayedi, A., Kahrizi, D., Zarei, L., & Jamali, S. (2022). Molecular genetic diversity and population structure of Iranian honey bee (Apis mellifera meda) populations: implications for breeding and conservation. Journal of Plant Diseases and Protection, 129(6), 1331-1342.
Rebelo, A. R., Fagundes, J. M., Digiampietri, L. A., Francoy, T. M., & Biscaro, H. H. (2021). A fully automatic classification of bee species from wing images. Apidologie, 1-15.
Requier, F., Garnery, L., Kohl, P. L., Njovu, H. K., Pirk, C. W., Crewe, R. M., & Steffan-Dewenter, I. (2019). The conservation of native honey bees is crucial. Trends in Ecology and Evolution, 34(9), 789-798.
Rodrigues, P. J., Gomes, W., & Pinto, M. A. (2022). DeepWings©: automatic wing geometric morphometrics classification of honey bee (Apis mellifera) subspecies using deep learning for detecting landmarks. Big Data and Cognitive Computing, 6(3), 70.
Rohlf. F. James. (2000). NTSYSpc Numerical Taxonomy and Multivariate Analysis System, version 2.02e. Exeter Software, Setauket, NY.
Rohlf, F. J. (2015). The tps series of software. Hystrix 26: 9-12.
Ruttner, F. (1988). Biogeography and Taxonomy of Honey Bees. Springer-Verlag Berlin Heidelberg GmbH.
Salehi, S., & Nazemi-Rafie, J. (2020). Discrimination of Iranian honeybee populations (Apis mellifera meda) from commercial subspecies of Apis mellifera L. using morphometric and genetic methods. Journal of Asia-Pacific Entomology, 23(2), 591-598.
Santoso, M. A. D., Juliandi, B., & Raffiudin, R. (2018, October). Honey bees species differentiation using geometric morphometric on wing venations. Earth and Environmental Science, 197 (1), 012015.
Sexton, J. P., Hangartner, S. B., & Hoffmann, A. A. (2014). Genetic isolation by environment or distance: which pattern of gene flow is most common? Evolution, 68(1), 1-15.
Slatkin, M. (1993). Isolation by distance in equilibrium and non-equilibrium populations. Evolution, 47(1), 264-279.
Somero, G. N. (2012). The physiology of global change: linking patterns to mechanisms. Annual Review of Marine Science, 4, 39-61.
Tahmasebi, G. H., Ebadi, R., Esmaili, M., & Kambousia, J. (1998). Morphological study of honeybee (Apis mellifera L.) in Iran. Journal of Water and Soil Science, 2(1), 89-101.
Wang, I. J., & Bradburd, G. S. (2014). Isolation by environment. Molecular Ecology, 23(23), 5649-5662.
Wang, I. J., & Summers, K. (2010). Genetic structure is correlated with phenotypic divergence rather than geographic isolation in the highly polymorphic strawberry poison-dart frog. Molecular Ecology, 19(3), 447-458.
Wright, S. (1943). Isolation by distance. Genetics, 28(2), 114-138.