Osteology of Vertebral Column and Caudal Skeleton of Iranian Aphaniid Species (Teleostei: Cyprinodontiformes, Aphaniidae)

Document Type : Research Article


1 Department of Animal Science, Faculty of Science, University of Mazandaran, Babolsar, Iran

2 Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany


In this study, a comparative analysis of the vertebral column and the caudal skeleton of 245 specimens of 10 Aphanius and three Aphaniops species was conducted based on X-ray imaging, and interspecific variation of these characters was examined. The vertebral bending index showed that straight and almost straight vertebral columns were more common in Aphaniops than in the Aphanius species. The numbers of abdominal and caudal vertebrae, principal caudal fin rays, and principal rays supported by the hypural plate were significantly lower in Aphaniops than in Aphanius species. Those species of Aphanius which were found in higher latitudes or altitudes had more vertebrae than the remaining Aphanius species and all members of Aphaniops, revealing the role of environmental factors. The number of preural (PU) vertebrae and the width of neural and haemal spines of preural vertebrae 2-4 were significantly higher in Aphaniops than in the Aphanius species. The conspicuous variations detected among localities of A. arakensis highlight the importance of more profound studies on the diversity of this species. In the genus Aphaniops, 17% of specimens showed a straight epural bone and 83% showed a sinu­soidal bone. In comparison, Aphanius species showed that 91% and 7% of specimens displayed straight and sinuous shape epural bone, respectively. Such intra-species polymorphism of the epural character state was first reported for Aphaniid species. Hence, the previously proposed synapomorphy for the genus Aphaniops based on sinu­soidal epural bones may need further investigation.


Main Subjects

Ackerly KL, Ward AB. 2016. How temperature-induced variation in musculoskeletal anatomy affects escape performance and survival of zebrafish (Danio rerio). J Exp Zool A Ecol Genet Physiol 325(1): 25-40.
Aguirre WE, Young A, Navarrete-Amaya R, Valdiviezo-Rivera J, Jimenez-Prado P, Cucaloni RV, …, Shervette VR. 2019. Vertebral number covaries with body form and elevation along the western slopes of the Ecuadorian Andes in the Neotropical fish genus Rhoadsia (Teleostei: Characidae). Biol J Linn Soc 126(4): 706-720.
Altner M, Reichenbacher B. 2015. Kenyaichthyidae fam. nov. and Kenyaichthys gen. nov.-First Record of a Fossil Aplocheiloid Killifish (Teleostei, Cyprinodontiformes). PLoS One 10(4): e0123056. doi: https://doi.org/10.1371/journal.pone.0123056
Angilletta MJ. 2009. Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press. New York.
Arratia G, Shultze HP. 1992. Reevaluation of the caudal skeleton of certain actinopterygian fishes: III Salmonidae, homologization of caudal skeletal structures. J Morphol 214(2): 187-249.
Bidaye RG, Al-Jufaili SM, Charmpila EA, Jawad L, Vukić J, Reichenbacher B. 2022. Possible links between phenotypic variability, habitats and connectivity in the killifish Aphaniops stoliczkanus in Northeast Oman. Acta Zool 1-17.
Barriga JP, Milano D, Cussac VE. 2013. Variation in vertebral number and its morphological implication in Galaxias platei. J Fish Biol 83(5): 1321-1333.
Brainerd EL, Patek SN. 1998. Vertebral column morphology, C-start curvature, and the evolution of mechanical defenses in tetraodontiform fishes. Copeia 971-984.
Charmpila EA, Teimori A, Freyhof J, Weissenbacher A, Reichenbacher B. 2020. New osteological and morphological data of four species of Aphaniops (Teleostei; Aphaniidae). J Appl Ichthyol 36(5): 724-736.
Coad BW. 2000. Distribution of Aphanius species in Iran. J Am Killifish Assoc 33(6): 183-191.
Costa WJEM. 1998. Phylogeny and classification of the Cyprinodontiformes (Euteleostei: Atherinomorpha): a reappraisal. In: Malabarba LR, Reis RE, Vari RP, Lucena ZMS, Lucena CAS (Eds). Phylogeny and classification of Neotropical Fishes. Edipucrs Press, Porto Alegre, Brasil.
Costa WJEM. 2012. The caudal skeleton of extant and fossil cyprinodontiform fishes (Teleostei: Atherinomorpha): Comparative morphology and delimitation of phylogenetic characters. Vertebr Zool 62(2): 161-180.
Esmaeili HR, Teimori A, Gholami Z, Reichenbacher B. 2014. Two new species of the tooth-carp Aphanius (Teleostei: Cyprinodontidae) and the evolutionary history of the Iranian inland and inland-related Aphanius species. Zootaxa 3786: 246-268.
Esmaeili HR, Teimori A, Zarei F, Sayyadzadeh G. 2020. DNA barcoding and species delimitation of the old world tooth-carps, family Aphaniidae Hoedeman, 1949 (Teleostei: Cyprinodontiformes). PLoS One 15(4): e0231717. doi: https://doi.org/10.1371/journal.pone.0231717
Fowler JA. 1970. Control of vertebral number in teleosts-an embryological problem. Q Rev Biol 45(2): 148-167.
Gholami Z, Esmaeili HR, Erpenbeck D, Reichenbacher B. 2014. Phylogenetic analysis of Aphanius from the endorheic Kor River Basin in the Zagros Mountains, South-western Iran (Teleostei: Cyprinodontiformes: Cyprinodontidae). J Zoolog Syst Evol Res 52(2): 130-141.
Jordan DS. 1891. Relations of temperature to vertebrae among fishes. Proceedings of the U.S. National Museum 14: 107-120.
Langerhans RB, Reznick DN. 2010. Ecology and evolution of swimming performance in fishes: predicting evolution with biomechanics. In: Domenici P, Kapoor BG. (Eds). Fish locomotion: an etho-ecological perspective. Science Publishers
Lauder GV, Drucker EG. 2004. Morphology and Experimental Hydrodynamics of Fish Fin Control Surfaces. IEEE J Ocean Eng 29(3): 556-571.
Lindsey CC. 1975. Pleomerism, the widespread tendency among related fish species for vertebral number to be correlated with maximum body length. J Fish Res Board Can 32(12): 2453-2469.
Lindsey CC, Arnason AN. 1981. A model for responses of vertebral numbers in fish to environmental influences during development. Can J Fish Aquat Sci 38(3): 334-347.
McDowall RM. 2008. Jordan’s and other ecogeographical rules, and the vertebral number in fishes. J Biogeogr 35(3): 501-508.
Mimura M, Yahara T, Faith DP, Vazquez-Dominguez E, Colautti RI, Araki H, …, Hendry AP. 2016. Understanding and monitoring the consequences of human impacts on intraspecific variation. Evol Appl 10(2): 121-139.
Morris M, Petrovitch E, Bowles E, Jamniczky HA, Rogers SM. 2017. Exploring Jordan’s rule in Pacific threespined stickleback Gasterosteus aculeatus. J Fish Biol 91(2): 645-663.
Nowroozi BN, Brainerd EL. 2012. Regional variation in the mechanical properties of the vertebral column during lateral bending in Morone saxatilis. J R Soc Interface 9(75): 2667-2679.
Parenti LR. 1981. A phylogenetic and biogeographic analysis of cyprinodontiform fishes (Teleostei, Atherinomorpha). Bull Am Mus Nat Hist 168: 335-557.
Reichenbacher B, Sienknecht U, Küchenhoff H, Fenske N. 2007. Combined otolith morphology and morphometry for assessing taxonomy and diversity in fossil and extant killifish (Aphanius, Prolebias). J Morphol 268(10): 898-915.
Reist JD. 1985. An empirical evaluation of several univariate methods that adjust for size variation in morphometric data. Can J Zool 63(6): 1429-1439.
Rosen DE. 1973. Interrelationships of higher euteleostean fishes. In: Greenwood PH, Miles RS, Patterson C. (Eds). Interrelationships of fishes. Academic Press, London.
Rosen DE. 1985. An essay on euteleostean classification. American Museum Novitates 2827: 1-57.
Schultze HP, Arratia G. 2013. The caudal skeleton of basal teleosts, its conventions, and some of its major evolutionary novelties in a temporal dimension. Mesozoic fishes 5:187-246.
Sfakianakis DG, Leris I, Laggis A, Kentouri M. 2011. The effect of rearing temperature on body shape and meristic characters in zebrafish (Danio rerio) juveniles. Environ Biol Fishes 92(2): 197-205.
Shao YT, Chuang SY, Chang HY, Tseng YC, Shao KT. 2018. Largescale mullet (Planiliza macrolepis) can recover from thermal pollution induced malformations. PLoS One 13(11): e0208005. doi: https://doi.org/10.1371/journal.pone.0208005
Teimori A, Esmaeili HR. 2020. Axial skeleton morphology of the Western Palearctic aphaniid fishes (Teleostei: Cyprinodontiformes; Family: Aphaniidae). Acta Zool 103(3): 282-296.
Teimori A, Motamedi M, Manizadeh N. 2017. microstructural characterization of the body key scale morphology in six Iranian endemic Aphanius species (Cyprinodontidae): Their taxonomic and evolutionary significance. J Ichthyol 57(4): 533-546.
Teimori A, Esmaeili HR, Hamidan N, Reichenbacher B. 2018. Systematics and historical biogeography of the Aphanius dispar species group (Teleostei: Aphaniidae) and description of a new species from Southern Iran. J Zoolog Syst Evol Res 56(4): 579-598.
 Wainwright PC, Reilly SM. 1994. Ecological morphology. Chicago, The University of Chicago Press.
Ward AB, Brainerd EL. 2007. Evolution of axial patterning in elongate fishes. Biol J Linn Soc 90(1): 97-116.
Webb PW. 1984. Form and function in fish swimming. Scientific American 251(1): 72-82.