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 The current research was conducted to study the effects of different fatty acids 
sources in the diet on blood metabolites and hormones in finishing lambs 
experimentally infected with the virus that causes foot and mouth disease. A 
total of fifteen Sangsari male lambs with an average live weight of 48±2 kg and 
an average age of 8±1 month were randomly assigned to one of three dietary 
experimental treatments as follows: 1) Calcium soap of palm oil fatty acids 
(PO) as a source of palmitic acid (16:0); 2) Calcium soap of sunflower oil fatty 
acids (SO) as the source of linoleic acid (n-6 18:2); and 3) Calcium soap of 
linseed oil fatty acids (LO) as the source of α-linolenic acid (n-3 18:3). The 
lambs were housed in individual pens and offered the iso-caloric and iso-
nitrogenous diets for 28 days including 21 days of adaptation period and 7 days 
of the sampling period. The results illustrated that the lowest and the highest 
expression of IL-4 mRNA were measured in LO and SO treatments, 
respectively. Expression of IL-8 mRNA was lower in LO and PO treatments 
when compared with SO. The highest level of glucose in LO treatment when 
compared with sunflower oil or palm oil. Lambs on the LO diet showed the 
highest blood concentration of insulin and the lowest blood concentration of 
glucagon when compared with lams on SO and PO diets. The highest blood 
contents of triiodothyronine and thyroxin hormones were measured in lambs on 
the LO diet when compared with other treatments. However, the concentration 
of blood glucose, insulin, glucagon, triiodothyronine, and thyroxin were the 
same between PO and SO groups. In conclusion, the findings of the current 
experiment confirmed that the inclusion of α-linolenic acid but not linoleic acid 
in the diet of virus-infected lambs suppressed pro-inflammation with lowering 
expression of IL-4 and IL-8 mRNA and increased blood glucose, insulin, T3, 
and T4 which may lead to higher weight gain and feed efficiency of virally 
infected lambs. 
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Introduction 

Inflammation is a vital part of the immunologic 
response, but the excessive expression and 
higher levels of pro-inflammatory cytokines 
(such as IL-1β, TNF-α, and IL-6) are destructive 
(Calder, 2003). Pro-inflammatory cytokines 
induce insulin resistance and adipose tissue 
lipolysis, increase the blood level of glucose and 
amplify catabolic metabolism such as muscle 
proteolysis (Bertoni et al., 2015). Also, pro-
inflammatory cytokines reduce the passage rate 
of digesta through the gastrointestinal tract, 

decrease the feed intake, cause an increase in 
body temperature and also decrease locomotion 
score (Bertoni et al., 2015; Jamshidi et al., 
2020). At the level of the liver, pro-inflammatory 
cytokines enhance the synthesis of acute-phase 
proteins such as serum amyloid A, haptoglobin, 
ceruloplasmin, and C-reactive protein (Powanda, 
1980) and reduce the synthesis of other proteins 
such as retinol-binding protein, paraoxonase, 
lipoproteins, and albumins (Loor et al., 2013). 
Common dietary sources of n-6 polyunsaturated 
fatty acids (PUFA) in ruminant diets are 
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sunflower, soybean, corn, and safflower oils. 
The n-6 PUFA such as linoleic acid (18:2 n-6) is 
the precursor of arachidonic acid (20:4 n-6), 
which can convert to leukotrienes, 
prostaglandins (such as PGE2), and their derived 
metabolites which have important roles in 
regulating immunity or inflammation occurrence 
(Yaqoob et al., 2000; Poorghasemi et al., 
2017b).  
The conversion of arachidonic acid to pro-
inflammation mediators can be prevented by the 
long-chain n-3 PUFA (Calder et al., 2002). The 
main n-3 PUFA in ruminant diets is α-linolenic 
acid (18:3 n-3). The studies have implied that the 
higher ratios of n-3 fatty acids to 
monounsaturated or saturated fatty acids, results 
in higher incorporation of n-3 fatty acids into 
phospholipids (Berge et al., 1999; Madsen et al., 
1999). Feeding n-3 PUFA results in the 
substitution of arachidonic acid by 
eicosapentaenoic acid in cell membranes of 
monocytes, macrophages, lymphocytes, and 
neutrophils which are involved in inflammation. 
This substitution leads to decreased production 
of arachidonic acid-derived mediators through 
the lower expression of 5-lipoxygenase and 
cyclooxygenase-2 and competition for 
lipoxygenase and cyclooxygenase. Thus, n-3 
PUFA feeding results in a decreased capacity of 
immune cells to synthesize series two 
prostaglandins from arachidonic acid (Yaqoob et 
al., 2000) and induce the formation of series-3 
eicosanoids, which have anti-inflammatory 
effects compared to series two prostaglandins 
(Gulliver et al., 2012). 
Because acute phase reaction leads to anorexia, 
catabolic processes of adipose and muscle 
tissues are one of the main resources of lipids 
and proteins during pro-inflammation (Ceciliani 
et al., 2012). It was shown that a low oral dose 
of IFN-α in cattle decreases plasma glucose and 
body reserves while increases plasma β-
hydroxybutyrate, non-esterified fatty acids, 
reactive oxygen species, ceruloplasmin, and 
haptoglobin (Trevisi et al., 2009). High 
production of cytokines during severe 
inflammation results in lower blood T3 and T4 
hormones (Huszenicza et al., 2002). 
One of the most devastating diseases in 
domesticated and wild cloven-hoofed animal 
species is Foot and mouth disease (FMD) 

(Slozhenkina et al., 2020). The causative agent 
of this infectious disease belongs to the 
Aphthoviruses genus of the Picornaviridae 
family. Like many domesticated cloven-hoofed 
animals, a lamb is very susceptible to foot and 
mouth disease virus (Park et al., 2006; Orsel et 
al., 2007). 
Since previous studies have focused on the effect 
of different fat sources containing omega-3 and 
omega-6 fatty acids on performance, nutritional 
and production parameters in birds, the present 
study on the effect of these fatty acids on safety 
parameters and gene expression related to 
immunity in livestock can be significant in terms 
of innovation (Halakoo et al., 2020).  
Also, because the results of previous reports 
have shown that in addition to genetic selection, 
non-genetic factors such as some nutrients and 
unsaturated fatty acids in the diet can express 
genes responsible for the immune response by 
altering immune maturity and antibody levels 
(Rajaei-Sharifabadi et al., 2021).  
Therefore, the present experiment was 
performed to investigate the effects of 16:0, 18:2 
n-6, and 18:3 n-3 fatty acids on blood 
metabolites and hormones of lambs infected with 
foot and mouth disease agents. 

Materials and Methods 

Animals and management 

In this study, a total of fifteen healthy Sangsari 
male lambs with an average body live weight of 
48±2 kg and an average age of 8±1month were 
randomly assigned to one of three experimental 
treatments (5 lambs per treatment). Treatments 
were as follows: 1) palm oil group (PO) received 
calcium soap of palm oil fatty acids in the diet as 
the source of palmitic acid (16:0); 2) sunflower 
oil group (SO) received calcium soap of 
sunflower oil fatty acids in the diet as the source 
of linoleic acid (n-6 18:2), and 3) linseed oil 
group (LO) received calcium soap of linseed oil 
fatty acids in the diet as the source of α-linolenic 
acid (n-3 18:3). 
The diets were balanced using Sheep CNCPS 
software. The feed ingredients and chemical 
composition of the experimental diets are 
presented in Table 1. The lambs were 
individually housed and offered the iso-caloric 
and iso-nitrogenous diet for 28 days including 21 
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days of adaptation period and 7 days of the 
sampling period. Rations were fed to the lambs 
three times daily. Animals have free and 
continuous access to fresh and clean drinking 
water. After the adaptation period, lambs were 
vaccinated against FMD. 
 

Table 1. Feed ingredients and chemical composition 
of basal experimental diet. 

Ingredients, g/kg of DM 

Alfalfa Hay  158 

Wheat Straw  158 

Barley Grain 330 

Dry Corn Grain 228 
Soybean Meal 82 

Oils  28 
Limestone  8 

Di-Calcium Phosphate  2 

Salt  2 

Sodium Bicarbonate 4 

Chemical Composition, g/kg of DM 

Metabolisable Energy (Mcal/kg) 2.85 

Crude Protein 140 

Neutral Detergent Fiber 257 

Non-Fibrous Carbohydrate 529 

Crude Fat 27 

Calcium 7.9 

Phosphorus 4.3 

Data and sample collection 

A single blood sample was collected before 
morning feeding on each of the 15 animals 7 
days after vaccination (on day 28 of the 
experiment) by jugular venipuncture after proper 
restraint with labeled sterile serum tubes 
containing 1 mg ml-1 of ethylene 
diaminetetracetate (EDTA) for the hematological 
analysis. The serum was separated by 
centrifugation at 3000 rpm for 15 min and then 
were kept at −20°C for later analysis of blood 
metabolites and hormones.  

RNA extraction and Real-time qPCR 

RNeasy®Mini Kit (Qiagen, Hilden, Germany) 
was used to isolation of total RNA from lamb’s 
blood sample, following the manufacturer’s 
protocol. The ratio of 260/280 nm absorbance 
readings was quantified by Nanodrop 2000 
spectrophotometer (Thermo Scientific, 
Wilmington, DE) for calculation of the 
concentration and purity of extracted RNA. The 
genomic DNA was removed before the reverse 
transcription of RNA to cDNA. Genomic DNA 
quantification is performed by 

spectrophotometry, agarose gel electrophoresis, 
cleavage-by-cleavage enzymes, and polymerase 
chain reaction (PCR). Complementary DNA 
(cDNA) was synthesized with approximately 
100ng/μL purified RNA using Quantitect® 
reverse transcription kit (Qiagen, Hilden, 
Germany) following the manufacturer’s 
procedure. For the internal standard, the GADPH 
gene was used as a housekeeping gene to 
standardize the expression.  
The Bio-Rad CFX96 Real-time PCR system 
(Bio-Rad Laboratories, CA, USA) was used to 
perform Real-time qPCR. Thermal cycling 
conditions consisted of enzyme activation at 
95°C for 15 min, followed by 40 cycles of 
denaturation at 95°C for 15s and annealing and 
extension at 60°C for 60 s (Faisal et al., 2013). 
Primer characteristics of cytokines and reference 
gene are described in Table 2. At the end of the 
amplification cycle, the analysis of the melting 
curve was performed to confirm the specificity 
of amplification. The relative expression levels 
of IL-4 and IL-8 transcripts were measured by 
quantitative real-time PCR. The comparative 
ΔΔCt method was used for quantification of 
Real-Time PCR outputs. A 5-fold serial dilution 
of cDNA was used as a standard curve to 
determine the efficiency of amplification of 
housekeeping and target genes. The GenEx 
enterprise software was used to statistically 
analyze obtained fold changes. 

Blood analysis 

Glucose concentrations in the serum were 
measured by Hitachi 902 Automatic Analyser 
(Roche Diagnostics, Germany) using Pars 
Azmoon kit (Tehran, Iran). The concentrations 
of plasma triiodothyronine, thyroxin, insulin, and 
glucagon were determined using Pishtaz Teb 
(Arak, Iran) ELISA kits according to the 
manufacturer’s recommendations. 

Statistical analysis 

A completely randomized design with 3 
treatments and 5 replicates per treatment was 
subjected to analyze the data. All data were 
analyzed using SAS v9.2 (Statistical Analysis 
System, SAS Institute, USA). Differences 
between treatment means were considered 
significant at P<0.05. 
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Table 2. Primer characteristics of cytokines and reference gene for real-time PCR amplification. 
Target gene  Primer Sequence (5′ - 3′) Product size (bp) NCBI accession number 
IL-8 F - CGAAAAGTGGGTGCAGAAGGT 

R - GGTTGTTTTTTCTTTTTCATGGA 
80 NM_001009401 

IL-4 F - CGCTCCCATGATTGTGGTAGTT 
R - GCCCAGTGGACAGGTTTCTG 

64 NM_001009313 

GADPH F - GAGAAGGCTGGGGCTCACC 
R - GCTGACAATCTTGAGGGTATTGTT 

129 AF030943 

F=Forward, R=Reverse, GADPH=Glyceraldehyde3-phosphate dehydrogenase, IL-8=Interleukin-8, IL-4=Interleukin-4 
 

Results 

Results of this study revealed significant 
differences (P <0.05) in IL-4 and IL-8 mRNA 
levels among various treatments (Table 3). The 
lowest and the highest expression of IL-4 mRNA 
was measured in LO and SO treatments, 
respectively (P <0.05). Expression of IL-8 
mRNA was lower in LO and PO treatments 
when compared with SO (P <0.01). 
 

Table 3. The relative IL-4 and IL-8 mRNA 
expression (fold change) in lambs fed experimental 
diets. 
 PO SO LO SEM P 

IL-4 mRNA 
expression 

1.76b 2.73a 1.01c 0.270 0.0208 

IL-8 mRNA 
expression 

1.09b 2.32a 1.01b 0.334 0.0001 

PO: Palm oil treatment (palmitic acid); SO: sunflower oil treatment 
(n-6 PUFA, linoleic acid); LO: linseed oil treatment (n-3 PUFA, α-
linolenic acid); SEM: standard error of means. Different superscript 
letters in a row mean statistical significance (P <0.05). 
 

There were significant differences between 
treatments on blood glucose concentrations 
(Table 4). Lambs that received 18:3 n-3 fatty 
acids in the diet (LO group) had higher blood 
glucose (P<0.05) when compared with lambs on 
16:0 (PO group) or 18:2 n-6 (SO group) diets. 
However, the concentration of blood glucose 
was similar between PO and SO groups 
(P>0.05).  
In the current study, lambs on the LO diet had 
the highest blood concentration of insulin 
(P<0.05) and the lowest blood concentration of 
glucagon (P<0.05) when compared with lambs 
on SO and PO diets, perhaps due to higher blood 
glucose in the LO group. However, there were 
no significant differences in blood concentration 
of insulin and glucagon between PO and SO 
groups (P>0.05).  
The highest concentrations of T3 and T4 
hormones in blood were measured on lambs on 
the LO diet when compared with other 
treatments (P<0.05). However, the 

concentrations of blood T3 and T4 were similar 
between groups fed palmitic acid and linoleic 
acid (P>0.05). 
 

Table 4. The effects of palmitic, linoleic, and α-
linolenic acid diets on blood glucose and hormones 
level in finishing lambs. 

 PO SO LO SEM P 

Glucose, (mg/dL) 58.0b 54.6b 65.8a 4.57 0.0066 

Insulin, (ng/L) 134.6b 133.6b 184.0a 9.91 0.0001 

Glucago, (ng/L) 329.2a 333.8a 287.8b 14.37 0.0005 

T3, (ng/mL) 0.75b 0.81b 0.91a 0.05 0.0008 

T4, (ng/mL) 5.08b 4.93b 6.55a 0.46 0.0002 
 

PO: palm oil treatment (palmitic acid); SO: sunflower oil treatment 
(n-6 PUFA, linoleic acid); LO: linseed oil treatment (n-3 PUFA, α-
linolenic acid); SEM: standard error of means. Different superscript 
letters in a row mean statistical significance (P <0.05). 

Discussion 

The effect of nutrition on the immune system 
can be specific or non-specific, some substances 
have an indirect effect and strengthen and 
stimulate the immune system including 
polyunsaturated fatty acids PUFA (Poorghasemi 
et al., 2013a). Depending on the type and 
amount of fat, both cell-mediated and humoral 
immunity are affected (Poorghasemi et al., 
2015). 
Dietary linolenic and linoleic acid and most of 
the omega-6 fatty acids in the feed are converted 
to arachidonic acid before they enter the cell 
membrane. Arachidonic acid is the main 
precursor to the production of eicosanoids 
(Poorghasemi et al., 2013b). 
Eicosanoids are hormone-like substances that 
play a biological role in regulating platelets, 
interfering with blood vessel walls, monocytes, 
and macrophages. Linolenic and linoleic are also 
seriously the metabolic origin of different types 
of pro-inflammatory and anti-inflammatory 
eicosanoids (Poorghasemi et al., 2017a).  
There is some evidence for different effects of α-
linolenic acid on the eicosanoid (interleukin) 
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synthesis. Some of the most important 
eicosanoids include prostaglandins (PG), 
leukotrienes (LT), and thromboxane (TX), which 
are involved in many immune responses. PGE2 
regulates the production of IL-2 and TNF. 
Leukotrienes increase T cell and B cell division 
and the activity of natural killer cells and the 
release of cytokines from T lymphocytes 
(Ghaderzadeh et al., 2019). α-linolenic acid 
produces anti-inflammatory substances and anti-
thrombotic components (Araújo et al., 2020). 
Winnik et al. (2011) confirmed that T cells of 
animals that ate a high α-linolenic acid diet 
expressed less IL-4 and reduced differentiation 
towards Th2 cells. Mizota et al. (2009) and 
Kaveh et al. (2019) showed that IFNγ level and 
the ratio of IL-4 to IFNγ, which is an index of 
actual Th2/Th1 cytokine-production, was 
significantly lower during consumption of the n-
6 versus the n-3 rich diet. In another study higher 
Th2 interleukins such as IL-4 and IL-5 resulted 
in an allergic response due to enhanced growth 
of mucosal-type mast cells and IgE production 
(Kaveh et al., 2019). Zeng et al. (2016) found 
that a high ratio of α-linolenic acid to linoleic 
acid in the juvenile fish diet significantly 
suppressed pro-inflammatory cytokines 
(interleukin-1β, tumor necrosis factor α, 
interferon γ2, and interleukin-8), increased 
complement C3 levels, raised interleukin-10 
mRNA abundance in the intestine. Darwesh et 
al. (2019) implied that the anti-inflammatory 
effects of n-3 PUFAs are ascribed to their ability 
to displace arachidonic acid in the cell 
membrane as an alternative substrate for PLA2, 
activate GPCR mediated cell signaling pathway 
that stimulates PPARs, inhibits NF-kB activity, 
and inhibit the NLRP3 inflammation cascade 
and so on. In agreement with our finding with 
interleukin-8, Hadfield (2017) showed that 
flaxseed supplement decreased CXCL8. 
Matsuyama et al. (2005) showed that TNFα and 
IL-8 levels decreased significantly in the n-3 
group compared with the n-6 group. 
Interleukin-8 is important as a mediator in 
response to the host to tissue and inflammatory 
damage and is also important as a neutrophil 
activator, neutrophil chemotactic, and basophil. 
This cytokine is secreted by various cells such as 
monocytes, T cells, neutrophils, and endothelial 

cells in the pathological and inflammatory stages 
(Poorghasemi et al., 2015).  
Interleukin-8 is promptly stimulated in response 
to pro-inflammatory cytokines, such as 
interferon-α and cellular pressures. Activating 
neutrophils by interleukin-8 produces enzymes 
that can cause tissue damage and ulceration. 
Poorghasemi et al. (2015) reported in their test 
results that α-linolenic has anti-inflammatory 
effects and its use by reducing the mechanism of 
inflammatory markers such as N-Telopeptides 
and a-TNF reduces inflammation and tissue 
damage. 
Many studies have shown that a variety of 
specific fatty acids stimulate gluconeogenesis 
(Williamson et al., 1966). Polyunsaturated fatty 
acids, especially the n-3 ones, increase the 
catabolism of fatty acids while decrease fat 
synthesis and esterification in the rodent liver 
(Ikeda et al., 1998). Therefore, PUFA partitions 
fatty acids towards oxidation and prevents 
triglycerides and other esterified compounds 
production (Kumamoto and Ide, 1998). In 
support of this concept, lower accumulation of 
triglycerides was measured in rodent 
hepatocytes, which were exposed to PUFA 
(Ikeda et al., 1998; Kumamoto and Ide, 1998).  
Fatty acids change both neuropeptide and 
hormone concentrations and their receptors 
(Bhathena, 2006). Polyunsaturated fatty acids are 
substrates for thromboxanes, leukotrienes, and 
prostaglandins, which can act like hormones 
(Lakdawala and Grant-Kels, 2015). As seen in 
the current study, lambs on the LO diet had the 
highest blood concentration of insulin. 
Consistent with the present results, the 
researchers found that LO intake increased 
insulin levels and improved insulin resistance 
parameters (Cooper et al., 2004). Also, they 
stated that LO not only releases insulin by cells 
but also increases insulin efficiency (Cooper et 
al., 2004). Some studies have documented that 
high α-linolenic acid or a high ratio of n-3 to n-6 
fatty acids stimulates insulin secretion from 
pancreatic β-cells (Itoh et al., 2003; Wei et al., 
2010). Bhaswant et al. (2015) showed that n-3 
PUFAs improves insulin sensitivity and 
secretion by regulating the apelin and other 
pathway and higher release of glucagon-like 
peptide 1 in the intestine. Higher glucose and 
insulin concentrations in virally infected animals 
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in the current study showed that α-linolenic acid 
diets suppress inflammation in finishing lambs, 
which consequently may lead to improved feed 
intake and weight gain. 
Researchers reported that higher α-linolenic acid 
intake decreases insulin resistance (Muramatsu 
et al., 2010). Al-Hasani and Joost (2005) showed 
that lowering the ratio of n-6 to n-3 fatty acids in 
the rodent diet can increase insulin sensitivity by 
increasing PPARγ activity (Al-Hasani and Joost, 
2005). Bhathena (2000) showed that in contrast 
with PUFA, trans and saturated fatty acids 
decrease insulin level, which leads to insulin 
resistance. In a human study by Kurotani et al. 
(2012), α-linolenic acid inclusion improved 
glucose homeostasis and increased adiponectin 
level. Thus, the current study showed that when 
inflammation occurs in finishing lambs, n-3 fatty 
acid diets improve insulin sensitivity and 
increase blood glucose, which consequently 
enhances the uptake of glucose and amino acids 
into muscle cells which should improve daily 
weight gain. 
In ruminants, transcription factors such as 
SREBP1, PPARα, and PPARγ regulate the 
mRNA level of the stearoyl-CoA desaturase 
(SCD) enzyme. Ebrahimi et al. (2014) showed 
that goats who received diets enriched with α-
linolenic acid had upregulation of PPARα and 
PPARγ but downregulation of the SCD gene 
compared to goats who received a diet enriched 
with linoleic acid. Insulin stimulates lipogenesis 
and incorporation of amino acids into protein 
and inhibits lipolysis and proteolysis (Ladeira et 
al., 2016; Sandri et al., 2018). Also, higher 
plasma insulin concentrations enhance nutrient 
uptake by muscle and adipose tissues and 
partition the nutrients to the mammary gland, 
which is not insulin-responsive (Zhao et al., 
1996). Higher plasma insulin and glucose levels 
may result in a decrease in lipogenesis which 
consequently may lead to higher weight gain and 
lower fat to protein ratio in carcasses of virally 
infected finishing lambs receiving a long-term α-
linolenic acid diet. 
In lamb, most serum T3 and rT3 produces by 
mono deiodination of T4 in peripheral tissues 
and only a small amount of serum T3 production 
is done in the thyroid gland (Fisher et al., 1972). 
It shows that a long-term high n-3 PUFAs diet 
intake would improve thyroid hormone action in 

the liver (Souza et al., 2010). A high level of T3 
increases feeds intake at the level of the 
hypothalamus (Kong et al., 2004). The overall 
effects of T4 are to increase protein synthesis, 
lipid metabolism, basal metabolic rate and to 
provide more glucose to cells (Capen and 
Martin, 1989). Rozing et al. (2012) reported that 
pro-inflammatory cytokines lower peripheral 
thyroid hormone levels during inflammation. 
Some researchers have shown a negative 
relationship between T3 and innate interleukins 
(Boelen et al., 1996). Thus, suppressed 
inflammation in finishing lambs on α-linolenic 
acid diet results in higher T3 and T4 hormones in 
lambs, which leads to improved feed intake, feed 
efficiency, and production performance. 

Conclusion 

The findings from this experiment showed that 
the inclusion of α-linolenic acid but not linoleic 
acid in diets of virus-infected lambs suppressed 
pro-inflammation by lowering the expression of 
IL-8 and IL-4 mRNA. This increased blood 
glucose, insulin, T3, and T4, which may lead to 
higher weight gain and feed efficiency of virally 
infected lambs. They bind to specific receptors 
and cause-specific biological changes in the cells 
and damage to them because IL-8 and IL-4 
cytokines act on specific cells through a specific 
receptor. Therefore, the present experiment 
confirmed that the presence of α-linolenic in the 
diet of lambs by inhibiting these cytokines can 
affect their growth and production performance 
as well as their health.  
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