Alavi, S. J., Ahmadi, K., Hosseini, S. M., Tabari, M., & Nouri, Z. (2019). The response of English yew (
Taxus baccata L.) to climate change in the Caspian Hyrcanian Mixed Forest ecoregion.
Regional Environmental Change, 19, 1495-1506.
https://doi.org/10.1007/s10113-019-01483-x
Amjad, A., & Ahmad, I. (2015). Optimizing plant density, planting depth and postharvest preservatives for
Lilium longifolium.
Journal of Ornamental Plants, 2(1), 13-20.
https://sanad.iau.ir/journal/jornamental/
Attarod, P., Kheirkhah, F., Khalighi Sigaroodi, S., Sadeghi, M., & Bayramzadeh, V. (2017). Trend analysis of meteorological parameters and reference evapotranspiration in the Caspian region.
Iranian journal of Forest, 9(2), 171-185.
https://www.ijf-isaforestry.ir/?lang=en
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., & Courchamp, F. (2012). Impacts of climate change on the future of biodiversity.
Ecology letters, 15(4), 365-377.
https://doi.org/10.1111/j.1461-0248.2011.01736.x
Buse, J., Boch, S., Hilgers, J., & Griebeler, E. M. (2015). Conservation of threatened habitat types under future climate change-Lessons from plant-distribution models and current extinction trends in southern Germany.
Journal for Nature Conservation,
27, 18-25.
https://doi.org/10.1016/j.jnc.2015.06.001
da Silva, J. M. C., Rapini, A., Barbosa, L. C. F., & Torres, R. R. (2019). Extinction risk of narrowly distributed species of seed plants in Brazil due to habitat loss and climate change. PeerJ, 7, e7333.
https://doi.org/10.7717/peerj.7333
Dehkaei, M. P., Khalighi, A., & Moosavi, R. N. A. (2005). Effect of alternating and constant temperature on seed germination of Chelcheragh liliy (
Lilium ledebourii) in Iran.
Acta horticulturae, 673(673):287-292.
https://doi.org/10.17660/ActaHortic.2005.673.35
Dhyani, A., Kadaverugu, R., Nautiyal, B. P., & Nautiyal, M. C. (2021). Predicting the potential distribution of a critically endangered medicinal plant
Lilium polyphyllum in Indian Western Himalayan Region.
Regional Environmental Change, 21, 1-11.
https://doi.org/10.1007/s10113-021-01763-5
Ding, L., Wu, Z., Teng, R., Xu, S., Cao, X., Yuan, G., ... & Teng, N. (2021). LlWRKY39 is involved in thermotolerance by activating LlMBF1c and interacting with LlCaM3 in lily (
Lilium longiflorum).
Horticulture Research, 8 (36).
https://doi.org/10.1038/s41438-021-00473-7
Franklin, J., Serra-Diaz, J. M., Syphard, A. D., & Regan, H. M. (2016). Global change and terrestrial plant community dynamics.
Proceedings of the National Academy of Sciences, 113(14), 3725-3734.
https://doi.org/10.1073/pnas.1519911113
Garza, G., Rivera, A., Venegas Barrera, C. S., Martinez-Ávalos, J. G., Dale, J., & Feria Arroyo, T. P. (2020). Potential effects of climate change on the geographic distribution of the endangered plant species
Manihot walkerae.
Forests, 11(6), 689.
https://www.mdpi.com/1999-4907/11/6/689#
Ghorbanalizadeh, A., & Akhani, H. (2022). Plant diversity of Hyrcanian relict forests: An annotated checklist, chorology and threat categories of endemic and near endemic vascular plant species.
Plant Diversity, 44(1), 39-69.
https://doi.org/10.1016/j.pld.2021.07.005
Kaky, E., Nolan, V., Alatawi, A., & Gilbert, F. (2020). A comparison between Ensemble and MaxEnt species distribution modelling approaches for conservation: A case study with Egyptian medicinal plants.
Ecological Informatics, 60, 101150.
https://doi.org/10.1016/j.ecoinf.2020.101150
Karger, D. N., Nobis, M. P., Normand, S., Graham, C. H., & Zimmermann, N. E. (2021). CHELSA-TraCE21k v1. 0. Downscaled transient temperature and precipitation data since the last glacial maximum.
Climate of the past discussions, 2021, 1-27.
https://doi.org/10.5194/cp-2021-30
Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E, Linder, H.P., Kessler, M. (2017). Data from: Climatologies at high resolution for the earth’s land surface areas.
Scientific Data. 5 (4), 170122.
https://doi.org/10.1038/sdata.2017.122
LaMarche Jr, V. C., & Mooney, H. A. (2018). Recent climatic change and development of the bristlecone pine (
P. longaeva Bailey) krummholz zone, Mt. Washington, Nevada.
Arctic and Alpine Research, 4(1), 61-72.
https://doi.org/10.1080/00040851.1972.12003670
Mayor, J. R., Sanders, N. J., Classen, A. T., Bardgett, R. D., Clement, J. C., Fajardo, A., ... & Wardle, D. A. (2017). Elevation alters ecosystem properties across temperate treelines globally.
Nature, 542(7639), 91-95.
https://doi.org/10.1038/nature21027
Mir, A. H., Tyub, S., & Kamili, A. N. (2020). Ecology, distribution mapping and conservation implications of four critically endangered endemic plants of Kashmir Himalaya.
Saudi Journal of Biological Sciences, 27(9), 2380-2389.
https://doi.org/10.1016/j.sjbs.2020.05.006
Qazi, A. W., Saqib, Z., & Zaman-ul-Haq, M. (2022). Trends in species distribution modelling in context of rare and endemic plants: a systematic review.
Ecological Processes, 11(1), 1-11.
https://doi.org/10.1186/s13717-022-00384-y
QGIS Development Team. (2023). QGIS Geographic Information System.
Open Source Geospatial Foundation Project (OSGeo).
https://qgis.org/
Saeedifard, M., Hosseini, M., Moradi, R., & Padasht Dehkaei, M. N. (2008). Ecological Evaluation of
Lilium ledebourii site in Gilan in order to determine ecological needs of this species.
Environmental Sciences,
5(4). 65- 76.
https://envs.sbu.ac.ir/?lang=en
Sagheb-Talebi, K.S., Sajedi, T., & Pourhashemi, M. (2016). Forests of Iran: A treasure from the past, a hope for the future, Softcover Reprint of the Original.
Salehi, M., Hatamzadeh, A., Jafarian, V., & Zarre, S. (2019). New molecular record and some biochemical features of the rare plant species of Iranian lily (
Lilium ledebourii Boiss.).
Horticulture, Environment, and Biotechnology, 60, 585-593.
https://doi.org/10.1007/s13580-018-0109-9
Shokrollahi, S., Yousefzadeh, H., Parisod, C., Heshmati, G., Bina, H., Ali, S., Amirchakhmaghi, N. and Song, Y. (2022). Phylogenetics and Biogeography of
Lilium ledebourii from the Hyrcanian Forest.
Diversity, 14(2), 137.
https://doi.org/10.3390/d14020137
Taheri, S., Naimi, B., Rahbek, C., & Araújo, M. B. (2021). Improvements in reports of species redistribution under climate change are required.
Science Advances, 7(15), eabe1110.
https://doi.org/10.1126/sciadv.abe1110
van Proosdij, A. S., Sosef, M. S., Wieringa, J. J., & Raes, N. (2016). Minimum required number of specimen records to develop accurate species distribution models.
Ecography, 39(6), 542-552.
https://doi.org/10.1111/ecog.01509
Waldvogel, A.M., Feldmeyer, B., Rolshausen, G., Exposito-Alonso, M., Rellstab, C., Kofler, R., Mock, T., Schmid, K., Schmitt, I., Bataillon, T., & Savolainen, O. (2020). Evolutionary genomics can improve prediction of species’ responses to climate change.
Evolution Letters, 4(1), 4-18.
https://doi.org/10.1002/evl3.154
Wang, L., Liu, J., Liu, J., Wei, H., Fang, Y., Wang, D., Chen, R., & Gu, W. (2023). Revealing the long-term trend of the global-scale
Ginkgo biloba distribution and the impact of future climate change based on the ensemble modeling.
Biodiversity and Conservation, 32(6), 2077-2100.
https://doi.org/10.1007/s10531-023-02593-z
Wang, Y., Pederson, N., Ellison, A. M., Buckley, H. L., Case, B. S., Liang, E., & Julio Camarero, J. (2016). Increased stem density and competition may diminish the positive effects of warming at alpine treeline.
Ecology, 97(7), 1668-1679.
https://doi.org/10.1890/15-1264.1
Wang, Z., Chang, Y. C. I., Ying, Z., Zhu, L., & Yang, Y. (2007). A parsimonious threshold-independent protein feature selection method through the area under receiver operating characteristic curve.
Bioinformatics, 23(20), 2788-2794.
https://doi.org/10.1093/bioinformatics/btm442
Yousefzadeh, H., Amirchakhmaghi, N., Naseri, B., Shafizadeh, F., Kozlowski, G., & Walas, Ł. (2022). The impact of climate change on the future geographical distribution range of the endemic relict tree
Gleditsia caspica (Fabaceae) in Hyrcanian forests.
Ecological Informatics, 71, 101773.
https://doi.org/10.1016/j.ecoinf.2022.101773
Yin, H., Chen, Q., & Yi, M. (2008). Effects of short-term heat stress on oxidative damage and responses of antioxidant system in
Lilium longiflorum.
Plant Growth Regulation, 54, 45-54.
https://doi.org/10.1007/s10725-007-9227-6
Zangiabadi, S., Zaremaivan, H., Brotons, L., Mostafavi, H., & Ranjbar, H. (2021). Using climatic variables alone overestimate climate change impacts on predicting distribution of an endemic species.
Plos one, 16(9), e0256918.
https://doi.org/10.1371/journal.pone.0256918
Zhang, H., Yang, S., Wei, X., Wang, L., Sun, X., Hou, Z., Zhong, Q., & Liu, W. (2023). Forecasting the favorable growth conditions and suitable regions for chicory (
Cichorium intybus L.) on the Qinghai plateau under current climatic conditions.
Ecological Informatics,78, 102343.
https://doi.org/10.1016/j.ecoinf.2023.102343
Zhang, L., Zhu, L., Li, Y., Zhu, W., & Chen, Y. (2022). Maxent modelling predicts a shift in suitable habitats of a subtropical evergreen tree (
Cyclobalanopsis glauca (Thunberg) Oersted) under climate change scenarios in China.
Forests, 13(1), 126.
https://doi.org/10.3390/f13010126