Climate Change Impact on the Future Distribution of Rare, Relict and Small Fragmented Populations of Lilium ledebourii in the Hyrcanian Forest

Document Type : Research Article

Authors

1 Tarbiat Modares University, Faculty of Natural sciences, Department of Forestry, Tehran, Iran

2 Tarbiat Modares University, Faculty of Natural sciences, Department of Environmental science, Tehran, Iran

3 Guilan University, Faculty of Natural sciences, Department of Forestry, Rasht, Iran

4 Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China

5 Department of Biology and Botanic Garden, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland

6 Natural History Museum Fribourg, Chemin du Musée 6, CH-1700 Fribourg, Switzerland

7 Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland

10.22080/jgr.2025.29178.1438

Abstract

This study aimed to map the historical geographical range of L. ledebourii in the Hyrcanian Forest; assess the current areas inhabited by this species; predict the future geographical distribution of this rare species under various climate change scenarios; and determine the main climatic factors associated with the distribution pattern of L. ledebourii. Lilium ledebourii is a rare plant with a very limited and fragmented distribution in the Hyrcanian Forest. A total of 19 spatial points were utilized to model the potential distribution of L. ledebourii under both current and projected climate conditions. Bioclimatic variables for present-day conditions were sourced from the CHELSA database, while data for the Last Glacial Maximum were obtained from the NCAR-CCSM4 model. For future climate scenarios, variables were derived from three different models across two distinct projections. The most important variables were precipitation in the warmest quarter, precipitation in the coldest quarter, and precipitation seasonality. The present potential range of the species covers 40,909 km2, forming a long strip in the Hyrcanian area with the highest suitability in the mountains. During the LGM, the species potential range was approximately 16% greater than the current range. Under future conditions, the potential range of L. ledebourii is likely to be drastically reduced, and suitability will decrease significantly. According to the morphological spatial pattern analysis, the future potential range of L. ledebourii will be fragmented in both tested scenarios. The connections between these core areas will be very restricted. Considering the shrinking of the habitat areas of L. ledebourii due to climate change and the high vulnerability of this species in its habitat (grazing, steep slopes, and soil erosion), ex situ conservation could represent the most effective approach for securing the long-term survival of L. ledebourii within the Hyrcanian forest.

Keywords

Main Subjects


Alavi, S. J., Ahmadi, K., Hosseini, S. M., Tabari, M., & Nouri, Z. (2019). The response of English yew (Taxus baccata L.) to climate change in the Caspian Hyrcanian Mixed Forest ecoregion. Regional Environmental Change, 19, 1495-1506. https://doi.org/10.1007/s10113-019-01483-x
Amjad, A., & Ahmad, I. (2015). Optimizing plant density, planting depth and postharvest preservatives for Lilium longifolium. Journal of Ornamental Plants, 2(1), 13-20. https://sanad.iau.ir/journal/jornamental/
Anderson, J. T. (2016). Plant fitness in a rapidly changing world. New phytologist, 210(1), 81-87. https://doi.org/10.1111/nph.13693
Attarod, P., Kheirkhah, F., Khalighi Sigaroodi, S., Sadeghi, M., & Bayramzadeh, V. (2017). Trend analysis of meteorological parameters and reference evapotranspiration in the Caspian region. Iranian journal of Forest, 9(2), 171-185. https://www.ijf-isaforestry.ir/?lang=en
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., & Courchamp, F. (2012). Impacts of climate change on the future of biodiversity. Ecology letters, 15(4), 365-377. https://doi.org/10.1111/j.1461-0248.2011.01736.x
Buse, J., Boch, S., Hilgers, J., & Griebeler, E. M. (2015). Conservation of threatened habitat types under future climate change-Lessons from plant-distribution models and current extinction trends in southern Germany. Journal for Nature Conservation, 27, 18-25. https://doi.org/10.1016/j.jnc.2015.06.001
da Silva, J. M. C., Rapini, A., Barbosa, L. C. F., & Torres, R. R. (2019). Extinction risk of narrowly distributed species of seed plants in Brazil due to habitat loss and climate change. PeerJ, 7, e7333. https://doi.org/10.7717/peerj.7333
Dehkaei, M. P., Khalighi, A., & Moosavi, R. N. A. (2005). Effect of alternating and constant temperature on seed germination of Chelcheragh liliy (Lilium ledebourii) in Iran. Acta horticulturae, 673(673):287-292. https://doi.org/10.17660/ActaHortic.2005.673.35
Dhyani, A., Kadaverugu, R., Nautiyal, B. P., & Nautiyal, M. C. (2021). Predicting the potential distribution of a critically endangered medicinal plant Lilium polyphyllum in Indian Western Himalayan Region. Regional Environmental Change, 21, 1-11. https://doi.org/10.1007/s10113-021-01763-5
Ding, L., Wu, Z., Teng, R., Xu, S., Cao, X., Yuan, G., ... & Teng, N. (2021). LlWRKY39 is involved in thermotolerance by activating LlMBF1c and interacting with LlCaM3 in lily (Lilium longiflorum). Horticulture Research, 8 (36). https://doi.org/10.1038/s41438-021-00473-7
Franklin, J., Serra-Diaz, J. M., Syphard, A. D., & Regan, H. M. (2016). Global change and terrestrial plant community dynamics. Proceedings of the National Academy of Sciences, 113(14), 3725-3734. https://doi.org/10.1073/pnas.1519911113
Garza, G., Rivera, A., Venegas Barrera, C. S., Martinez-Ávalos, J. G., Dale, J., & Feria Arroyo, T. P. (2020). Potential effects of climate change on the geographic distribution of the endangered plant species Manihot walkerae. Forests, 11(6), 689. https://www.mdpi.com/1999-4907/11/6/689#
Ghorbanalizadeh, A., & Akhani, H. (2022). Plant diversity of Hyrcanian relict forests: An annotated checklist, chorology and threat categories of endemic and near endemic vascular plant species. Plant Diversity, 44(1), 39-69. https://doi.org/10.1016/j.pld.2021.07.005
Hijmans, R. J., & Van Etten, J. (2020). Raster: geographic data analysis and modeling. R package. https://doi.org/10.32614/CRAN.package.raster
IUCN, P.S. (2019). Guidelines for using the IUCN red list categories and criteria, version 14. Available at: https://www.iucnredlist.org/documents/RedListGuidelines.pdf.
Kaky, E., Nolan, V., Alatawi, A., & Gilbert, F. (2020). A comparison between Ensemble and MaxEnt species distribution modelling approaches for conservation: A case study with Egyptian medicinal plants. Ecological Informatics, 60, 101150. https://doi.org/10.1016/j.ecoinf.2020.101150
Karger, D. N., Nobis, M. P., Normand, S., Graham, C. H., & Zimmermann, N. E. (2021). CHELSA-TraCE21k v1. 0. Downscaled transient temperature and precipitation data since the last glacial maximum. Climate of the past discussions, 2021, 1-27. https://doi.org/10.5194/cp-2021-30
Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E, Linder, H.P., Kessler, M. (2017). Data from: Climatologies at high resolution for the earth’s land surface areas. Scientific Data. 5 (4), 170122. https://doi.org/10.1038/sdata.2017.122
Kumar, A., Nagar, S., & Anand, S. (2021). Climate change and existential threats. Global Climate Change, 1, 1-31. https://doi.org/10.1016/B978-0-12-822928-6.00005-8
LaMarche Jr, V. C., & Mooney, H. A. (2018). Recent climatic change and development of the bristlecone pine (P. longaeva Bailey) krummholz zone, Mt. Washington, Nevada. Arctic and Alpine Research, 4(1), 61-72. https://doi.org/10.1080/00040851.1972.12003670
Mayor, J. R., Sanders, N. J., Classen, A. T., Bardgett, R. D., Clement, J. C., Fajardo, A., ... & Wardle, D. A. (2017). Elevation alters ecosystem properties across temperate treelines globally. Nature, 542(7639), 91-95. https://doi.org/10.1038/nature21027
Mir, A. H., Tyub, S., & Kamili, A. N. (2020). Ecology, distribution mapping and conservation implications of four critically endangered endemic plants of Kashmir Himalaya. Saudi Journal of Biological Sciences, 27(9), 2380-2389. https://doi.org/10.1016/j.sjbs.2020.05.006
Qazi, A. W., Saqib, Z., & Zaman-ul-Haq, M. (2022). Trends in species distribution modelling in context of rare and endemic plants: a systematic review. Ecological Processes, 11(1), 1-11. https://doi.org/10.1186/s13717-022-00384-y
QGIS Development Team. (2023). QGIS Geographic Information System. Open Source Geospatial Foundation Project (OSGeo). https://qgis.org/
Saeedifard, M., Hosseini, M., Moradi, R., & Padasht Dehkaei, M. N. (2008). Ecological Evaluation of Lilium ledebourii site in Gilan in order to determine ecological needs of this species. Environmental Sciences, 5(4). 65- 76. https://envs.sbu.ac.ir/?lang=en
Sagheb-Talebi, K.S., Sajedi, T., & Pourhashemi, M. (2016). Forests of Iran: A treasure from the past, a hope for the future, Softcover Reprint of the Original.
Sakio, H., & Masuzawa, T. (2020). Advancing timberline on Mt. Fuji between 1978 and 2018. Plants, 9(11), 1537. https://doi.org/10.3390/plants9111537
Salehi, M., Hatamzadeh, A., Jafarian, V., & Zarre, S. (2019). New molecular record and some biochemical features of the rare plant species of Iranian lily (Lilium ledebourii Boiss.). Horticulture, Environment, and Biotechnology, 60, 585-593. https://doi.org/10.1007/s13580-018-0109-9
Shokrollahi, S., Yousefzadeh, H., Parisod, C., Heshmati, G., Bina, H., Ali, S., Amirchakhmaghi, N. and Song, Y. (2022). Phylogenetics and Biogeography of Lilium ledebourii from the Hyrcanian Forest. Diversity, 14(2), 137. https://doi.org/10.3390/d14020137
Song, J. (2017). The relationship of root system with the growth and development of bulbs and shoots in lilies. HortScience, 52(2), 245-250. https://doi.org/10.21273/HORTSCI11463-16
Taheri, S., Naimi, B., Rahbek, C., & Araújo, M. B. (2021). Improvements in reports of species redistribution under climate change are required. Science Advances, 7(15), eabe1110. https://doi.org/10.1126/sciadv.abe1110
van Proosdij, A. S., Sosef, M. S., Wieringa, J. J., & Raes, N. (2016). Minimum required number of specimen records to develop accurate species distribution models. Ecography, 39(6), 542-552. https://doi.org/10.1111/ecog.01509
Vogt, P., & Riitters, K. (2017). GuidosToolbox: universal digital image object analysis. European Journal of Remote Sensing, 50(1), 352-361. https://doi.org/10.1080/22797254.2017.1330650
Waldvogel, A.M., Feldmeyer, B., Rolshausen, G., Exposito-Alonso, M., Rellstab, C., Kofler, R., Mock, T., Schmid, K., Schmitt, I., Bataillon, T., & Savolainen, O. (2020). Evolutionary genomics can improve prediction of species’ responses to climate change. Evolution Letters, 4(1), 4-18. https://doi.org/10.1002/evl3.154
Wang, L., Liu, J., Liu, J., Wei, H., Fang, Y., Wang, D., Chen, R., & Gu, W. (2023). Revealing the long-term trend of the global-scale Ginkgo biloba distribution and the impact of future climate change based on the ensemble modeling. Biodiversity and Conservation, 32(6), 2077-2100. https://doi.org/10.1007/s10531-023-02593-z
Wang, Y., Pederson, N., Ellison, A. M., Buckley, H. L., Case, B. S., Liang, E., & Julio Camarero, J. (2016). Increased stem density and competition may diminish the positive effects of warming at alpine treeline. Ecology, 97(7), 1668-1679. https://doi.org/10.1890/15-1264.1
Wang, Z., Chang, Y. C. I., Ying, Z., Zhu, L., & Yang, Y. (2007). A parsimonious threshold-independent protein feature selection method through the area under receiver operating characteristic curve. Bioinformatics, 23(20), 2788-2794. https://doi.org/10.1093/bioinformatics/btm442
Yousefzadeh, H., Amirchakhmaghi, N., Naseri, B., Shafizadeh, F., Kozlowski, G., & Walas, Ł. (2022). The impact of climate change on the future geographical distribution range of the endemic relict tree Gleditsia caspica (Fabaceae) in Hyrcanian forests. Ecological Informatics, 71, 101773. https://doi.org/10.1016/j.ecoinf.2022.101773
Yin, H., Chen, Q., & Yi, M. (2008). Effects of short-term heat stress on oxidative damage and responses of antioxidant system in Lilium longiflorum. Plant Growth Regulation, 54, 45-54. https://doi.org/10.1007/s10725-007-9227-6
Zangiabadi, S., Zaremaivan, H., Brotons, L., Mostafavi, H., & Ranjbar, H. (2021). Using climatic variables alone overestimate climate change impacts on predicting distribution of an endemic species. Plos one, 16(9), e0256918. https://doi.org/10.1371/journal.pone.0256918
Zhang, H., Yang, S., Wei, X., Wang, L., Sun, X., Hou, Z., Zhong, Q., & Liu, W. (2023). Forecasting the favorable growth conditions and suitable regions for chicory (Cichorium intybus L.) on the Qinghai plateau under current climatic conditions. Ecological Informatics,78, 102343. https://doi.org/10.1016/j.ecoinf.2023.102343
Zhang, L., Zhu, L., Li, Y., Zhu, W., & Chen, Y. (2022). Maxent modelling predicts a shift in suitable habitats of a subtropical evergreen tree (Cyclobalanopsis glauca (Thunberg) Oersted) under climate change scenarios in China. Forests, 13(1), 126. https://doi.org/10.3390/f13010126