Alahakoon, A. A. Y. (2019). Engineering disease resistance and frost tolerance in rapeseed (Brassica napus L.) using ACYL-COENZYME A-BINDING PROTEINS. PhD thesis, The University of Melbourne, Australia. Retrieved from https://rest.neptune-prod.its.unimelb.edu.au.
Bastien, M., Sonah, H., & Belzile, F. (2014). Genome wide association mapping of
Sclerotinia sclerotiorum resistance in soybean with a genotyping‐by‐sequencing approach.
The Plant Genome, 7(1), 1-13.
https://doi.org/10.3835/plantgenome2013.10.0030
Chahed, H., Ezzine, A., Mlouka, A. B., Hardouin, J., Jouenne, T., & Marzouki, M. N. (2014). Biochemical characterization, molecular cloning, and structural modeling of an interesting β-1, 4-glucanase from
Sclerotinia sclerotiorum.
Molecular Biotechnology, 56, 340-350.
https://doi.org/10.1007/s12033-013-9714-0
Chen, H., Sun, S., Norenburg, J. L., & Sundberg, P. (2014). Mutation and selection cause codon usage and bias in mitochondrial genomes of ribbon worms (Nemertea).
PloS One, 9(1), e85631.
https://doi.org/10.1371/journal.pone.0085631
Chin, C. H., Chen, S. H., Wu, H. H., Ho, C. W., Ko, M. T., & Lin, C. Y. (2014). CytoHubba: identifying hub objects and sub-networks from complex interactome.
BMC Systems Biology, 8, 1-7.
https://doi.org/10.1186/1752-0509-8-S4-S11
Chittem, K., Yajima, W. R., Goswami, R. S., & del Río Mendoza, L. E. (2020). Transcriptome analysis of the plant pathogen
Sclerotinia sclerotiorum interaction with resistant and susceptible canola (
Brassica napus) lines.
PLoS One, 15(3), e0229844.
https://doi.org/10.1371/journal.pone.0229844
Duke, K. A., Becker, M. G., Girard, I. J., Millar, J. L., Dilantha Fernando, W. G., Belmonte, M. F., & de Kievit, T. R. (2017). The biocontrol agent
Pseudomonas chlororaphis PA23 primes
Brassica napus defenses through distinct gene networks.
BMC Genomics, 18, 1-16.
https://doi.org/10.1186/s12864-017-3848-6
Fuglsang, A. (2008). Impact of bias discrepancy and amino acid usage on estimates of the effective number of codons used in a gene, and a test for selection on codon usage.
Gene, 410, 82-88.
https://doi.org/10.1016/j.gene.2007.12.001
Guillén, D., Sánchez, S., & Rodríguez-Sanoja, R. (2010). Carbohydrate-binding domains: multiplicity of biological roles.
Applied Microbiology and Biotechnology, 85, 1241-1249.
https://doi.org/10.1007/s00253-009-2331-y
Colagar, A. H., Saadati, M., Zarea, M., & Talei, S. A (2010). Genetic variation of the Iranian
Sclerotinia sclerotiorum isolates by standardizing DNA polymorphic fragments.
Biotechnology (-Pakistan), 9(1), 67-72.
https://doi/full/10.5555/20103179789
Khangura, R., Beard, C., & Hills, A. (2015).
Managing sclerotinia stem rot in rapeseed. Department of Agriculture and Food
, Australian Government, Australia.
https://library.dpird.wa.gov.au/
Larroque, M., Barriot, R., Bottin, A., Barre, A., Rougé, P., Dumas, B., & Gaulin, E. (2012). The unique architecture and function of cellulose-interacting proteins in oomycetes revealed by genomic and structural analyses.
BMC Genomics, 13, 1-15.
https://doi.org/10.1186/1471-2164-13-605
Li, M., Li, D., Tang, Y., Wu, F., & Wang, J. (2017). CytoCluster: a cytoscape plugin for cluster analysis and visualization of biological networks.
International Journal of Molecular Sciences, 18(9): 1880.
https://doi.org/10.3390/ijms18091880
Li, Y., Song, S., Chen, B., Zhang, Y., Sun, T., Ma, X., ... & Zhang, X. (2024). Deleting an xylosidase-encoding gene VdxyL3 increases growth and pathogenicity of
Verticillium dahlia.
Frontiers in Microbiology, 15, 1428780.
https://doi.org/10.3389/fmicb.2024.1428780
Liu, B., Ma, Z., Gai, X., Sun, Y., Wang, Y., He, S., & Gao, Z. (2018). Analysis of putative sclerotia maturation-related gene expression in
Rhizoctonia solani AG1-IA.
Archives of Biological Sciences, 70(4), 647-653.
http://orcid.org/0000-0002-8342-8613
Pazhamala, L. T., Kudapa, H., Weckwerth, W., Millar, A. H., & Varshney, R. K. (2021). Systems biology for crop improvement.
The Plant Genome, 14(2), e20098.
https://doi.org/10.1002/tpg2.20098
Peng, Q., Xie, Q., Chen, F., Zhou, X., Zhang, W., Zhang, J., ... & Chen, S. (2017). Transcriptome analysis of
Sclerotinia sclerotiorum at different infection stages on
Brassica napus.
Current Microbiology, 74, 1237-1245.
https://doi.org/10.1007/s00284-017-1309-8
Pieterse, C. M., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C., & Bakker, P. A. (2014). Induced systemic resistance by beneficial microbes.
Annual Review of Phytopathology, 52(1), 347-375.
https://doi.org/10.1146/annurev-phyto-082712-102340
Riou, C., Freyssinet, G., & Fevre, M. (1991). Production of cell wall-degrading enzymes by the phytopathogenic fungus
Sclerotinia sclerotiorum.
Applied and Environmental Microbiology, 57(5), 1478-1484.
https://doi.org/10.1128/aem.57.5.1478-1484.1991
Saharan, G. S. & Mehta, N. (2008). Sclerotinia diseases of crop plants: biology, ecology and disease management. Springer Science & Business Media, Germany. https://doi.org/
10.1007/978-1-4020-8408-9
Seifbarghi, S., Borhan, M. H., Wei, Y., Coutu, C., Robinson, S. J., & Hegedus, D. D. (2017). Changes in the
Sclerotinia sclerotiorum transcriptome during infection of
Brassica napus.
BMC Genomics, 18, 1-37.
https://doi.org/10.1186/s12864-017-3642-5
Sharp, P. M., & Li, W. H. (1986). An evolutionary perspective on synonymous codon usage in unicellular organisms.
Journal of Molecular Evolution, 24(12), 28-38.
https://doi.org/10.1007/BF02099948
Tyagi, S., Kabade, P. G., Gnanapragasam, N., Singh, U. M., Gurjar, A. K. S., Rai, A., ... & Singh, V. K. (2023). Codon usage provide insights into the adaptation of rice genes under stress condition.
International Journal of Molecular Sciences, 24(2), 1098.
https://doi.org/10.3390/ijms24021098
Unkles, S. E., Wang, R., Wang, Y., Glass, A. D., Crawford, N. M., & Kinghorn, J. R. (2004). Nitrate reductase activity is required for nitrate uptake into fungal but not plant cells.
Journal of Biological Chemistry, 279(27), 28182-28186.
https://doi.10.1074/jbc.M403974200
Waksman, G. (1989). Molecular cloning of a beta-glucosidase-encoding gene from
Sclerotinia sclerotiorum by expression in
Escherichia coli.
Current Genetics, 15, 295-297.
https://doi.org/10.1007/BF00447047
Wei, J., Yao, C., Zhu, Z., Gao, Z., Yang, G., & Pan, Y. (2023). Nitrate reductase is required for sclerotial development and virulence of
Sclerotinia sclerotiorum.
Frontiers in Plant Science, 14, 1096831.
https://doi.org/10.3389/fpls.2023.1096831
Wu, J., Zhao, Q., Yang, Q., Liu, H., Li, Q., Yi, X., ... & Zhou, Y. (2016). Comparative transcriptomic analysis uncovers the complex genetic network for resistance to
Sclerotinia sclerotiorum in
Brassica napus.
Scientific Reports, 6(1), 19007.
https://doi.org/10.1038/srep19007
Xu, B., Gong, X., Chen, S., Hu, M., Zhang, J., & Peng, Q. (2021a). Transcriptome analysis reveals the complex molecular mechanisms of
Brassica napus-Sclerotinia sclerotiorum interactions.
Frontiers in Plant Science, 12, 716935.
https://doi.org/10.3389/fpls.2021.716935
Xu, Y., Liu, K., Han, Y., Xing, Y., Zhang, Y., Yang, Q., & Zhou, M. (2021b). Codon usage bias regulates gene expression and protein conformation in yeast expression system
P. pastoris.
Microbial Cell Factories, 20(1), 91.
https://doi.org/10.1186/s12934-021-01580-9
Zomorodian, A., Kavoosi, Z., & Momenzadeh, L. (2011). Determination of EMC isotherms and appropriate mathematical models for rapeseed
. Food and Bioproducts Processing, 89(4), 407-413.
https://doi.org/10.1016/j.fbp.2010.10.006