Identification of new genes regulating nodule development in Medicago truncatula: an in-silico approach

Document Type : Research Article

Authors

Cell and Molecular Biology Department, Kosar University of Bojnord, Bojnord, Iran

Abstract

Biological nitrogen fixation is a process by which atmospheric nitrogen could be converted to the bioavailable nitrogen forms for plants. Among plants, legumes have the ability to fix nitrogen through symbiotic interaction with a specific group of bacteria called rhizobia. Because of this interaction, organs named nodules form on the plant roots. Nodule organogenesis on plant roots begins with the perception of Nod factor by plant root cells. Downstream of Nod factor perception, activation of transcription factor (TF) signaling cascade in root tissue take place. This results in the formation of structure named infection thread and initiation of cell division in root cortex and finally formation of functional nodules. Due to the importance of biological nitrogen fixation to improve soil fertility, the molecular mechanism of nodule development is studied extensively. Here in order to identify new possible regulators that affect the formation of nodules during symbiosis in Medicago truncatula, the most significant symbiotic related TFs including MtIPD3, MtNSP1, MtNSP2, MtNIN, MtERN1, MtERN2, and MtERN3 were studied. Analyzing co-expressed genes with Phytozome database and examining interaction networks with STRING database have indicated potential new regulators involved in nodule development. According to our data, there is a high physical interaction score between IPD3 with some splicing factors and cell cycle proteins. This shows that IPD3 through interaction with these proteins could be involved in regulation of gene expression and cell cycle. Besides, we found a possible cytokinin transport gene ABCG38 and showed the activation of its expression in nodules compared to root. Moreover, we showed that auxin response factor Medtr2g043250 could be direct target of NIN transcription factor. Our results on potential regulators of nodule organogenesis will pave the way for additional researches.

Keywords

Main Subjects


Aasfar, A., Meftah Kadmiri, I., Azaroual, S. E., Lemriss, S., Mernissi, N. E., Bargaz, A., ... & Hilali, A. (2024). Agronomic advantage of bacterial biological nitrogen fixation on wheat plant growth under contrasting nitrogen and phosphorus regimes. Frontiers in Plant Science, 15, 1388775. https://doi.org/10.3389/fpls.2024.1388775
Andriankaja, A., Boisson-Dernier, A., Frances, L., Sauviac, L., Jauneau, A., Barker, D. G., & de Carvalho-Niebel, F. (2007). AP2-ERF transcription factors mediate Nod factor-dependent Mt ENOD11 activation in root hairs via a novel cis-regulatory motif. The Plant Cell, 19(9), 2866-2885. https://doi.org/10.1105tpc.107.052944
Azarakhsh, M., & Lebedeva, M. A. (2023). Lateral root versus nodule: the auxin-cytokinin interplay. Journal of Plant Growth Regulation, 42(11), 6903-6919. https://doi.org/10.1007/s00344-023-10983-4
Bailey, T. L., & Elkan, C. (1994). Fitting a mixture model by expectation maximization to discover motifs in bipolymers. Proceedings - International Conference on Intelligent Systems for Molecular Biology, 2, 28-36.
Bauer, P., Ratet, P., Crespi, M. D., Schultze, M., & Kondorosi, A. (1996). Nod factors and cytokinins induce similar cortical cell division, amyloplast deposition and MsEnod12A expression patterns in alfalfa roots. The Plant Journal, 10(1), 91-105. https://doi.org/10.1104/pp.116.1.53
Cerri, M. R., Frances, L., Kelner, A., Fournier, J., Middleton, P. H., Auriac, M. C., ... & de Carvalho-Niebel, F. (2016). The symbiosis-related ERN transcription factors act in concert to coordinate rhizobial host root infection. Plant Physiology, 171(2), 1037-1054. https://doi.org/10.1104/pp.16.00230
Chakraborty, S., Valdés-López, O., Stonoha-Arther, C., & Ané, J. M. (2022). Transcription factors controlling the rhizobium-legume symbiosis: integrating infection, organogenesis and the abiotic environment. Plant and Cell Physiology, 63(10), 1326-1343. https://doi.org/10.1093/pcp/pcac063
Charpentier, M., Sun, J., Martins, T. V., Radhakrishnan, G. V., Findlay, K., Soumpourou, E., ... & Oldroyd, G. E. (2016). Nuclear-localized cyclic nucleotide-gated channels mediate symbiotic calcium oscillations. Science, 352(6289), 1102-1105. https://doi.org/10.1126/science.aae0109
Chaulagain, D., & Frugoli, J. (2021). The regulation of nodule number in legumes is a balance of three signal transduction pathways. International Journal of Molecular Sciences, 22(3), 1117. https://doi.org/10.3390/ijms22031117
Endre, G., Kereszt, A., Kevei, Z., Mihacea, S., Kaló, P., & Kiss, G. B. (2002). A receptor kinase gene regulating symbiotic nodule development. Nature, 417(6892), 962-966. https://doi.org/10.1038/nature00842
Ferguson, B. J., Indrasumunar, A., Hayashi, S., Lin, M. H., Lin, Y. H., Reid, D. E., & Gresshoff, P. M. (2010). Molecular analysis of legume nodule development and autoregulation. Journal of Integrative Plant Biology, 52(1), 61-76. https://doi.org/10.1111/j.1744-7909.2010.00899.x
Garrocho-Villegas, V., Gopalasubramaniam, S. K., & Arredondo-Peter, R. (2007). Plant hemoglobins: what we know six decades after their discovery. Gene, 398(1-2), 78-85. https://doi.org/10.1016/j.gene.2007.01.035
Goodstein, D. M., Shu, S., Howson, R., Neupane, R., Hayes, R. D., Fazo, J., ... & Rokhsar, D. S. (2012). Phytozome: a comparative platform for green plant genomics. Nucleic Acids Research, 40(D1), D1178-D1186. https://doi.org/10.1093/nar/gkr944
Grant, C. E., Bailey, T. L., & Noble, W. S. (2011). FIMO: scanning for occurrences of a given motif. Bioinformatics, 27(7), 1017-1018. https://doi.org/10.1093bioinformatics/btr064
Heckmann, A. B., Sandal, N., Bek, A. S., Madsen, L. H., Jurkiewicz, A., Nielsen, M. W., ... & Stougaard, J. (2011). Cytokinin induction of root nodule primordia in Lotus japonicus is regulated by a mechanism operating in the root cortex. Molecular Plant-Microbe Interactions, 24(11), 1385-1395. https://doi.org/10.1094MPMI-05-11-0142
Hirsch, S., Kim, J., Munoz, A., Heckmann, A. B., Downie, J. A., & Oldroyd, G. E. (2009). GRAS proteins form a DNA binding complex to induce gene expression during nodulation signaling in Medicago truncatula. The Plant Cell, 21(2), 545-557. https://doi.org/10.1105/tpc.108.064501
Huisman, J., Codd, G. A., Paerl, H. W., Ibelings, B. W., Verspagen, J. M. H., & Visser, P. M. (2018). Cyanobacterial blooms. Nature Reviews Microbiology, 16(8), 471-483. https://doi.org/10.1038/s41579-018-0040-1
Horváth, B., Yeun, L. H., Domonkos, Á., Halász, G., Gobbato, E., Ayaydin, F., ... & Kaló, P (2011). Medicago truncatula IPD3 is a member of the common symbiotic signaling pathway required for rhizobial and mycorrhizal symbioses. Molecular plant-microbe interactions, 24(11), 1345-1358. https://doi.org/10.1094/MPMI-01-11-0015
Jarzyniak, K., Banasiak, J., Jamruszka, T., Pawela, A., Di Donato, M., Novák, O., ... & Jasiński, M. (2021). Early stages of legume–rhizobia symbiosis are controlled by ABCG-mediated transport of active cytokinins. Nature Plants, 7(4), 428-436. https://doi.org/10.1038/s41477-021-00873-6
Jin, Y., Liu, H., Luo, D., Yu, N., Dong, W., Wang, C., et al. (2016). DELLA proteins are common components of symbiotic rhizobial and mycorrhizal signalling pathways. Nature Communications, 7(1), 12433. https://doi.org/10.1038/ncomms12433
Laffont, C., Ivanovici, A., Gautrat, P., Brault, M., Djordjevic, M. A., & Frugier, F. (2020). The NIN transcription factor coordinates CEP and CLE signaling peptides that regulate nodulation antagonistically. Nature Communications, 11(1), 3167. https://doi.org/10.1038/s41467-020-16968-1
Le, N. Q. K., Yapp, E. K. Y., Nagasundaram, N., & Yeh, H.-Y. (2019). Classifying promoters by interpreting the hidden information of DNA sequences via deep learning and combination of continuous fasttext N-grams. Frontiers in Bioengineering and Biotechnology, 7, 305. https://doi.org/10.3389/fbioe.2019.00305
Lebedeva, M., Azarakhsh, M., Sadikova, D., & Lutova, L. (2021). At the root of nodule organogenesis: conserved regulatory pathways recruited by rhizobia. Plants, 10(12), 2654. https://doi.org/10.3390/plants10122654
Lévy, J., Bres, C., Geurts, R., Chalhoub, B., Kulikova, O., Duc, G., ... & Debellé, F (2004). A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science, 303(5662), 1361-1364. https://doi.org/10.1126/science.1093038
Liu, C. W., Breakspear, A., Guan, D., Cerri, M. R., Jackson, K., Jiang, S., ... & Murray, J. D. (2019). NIN acts as a network hub controlling a growth module required for rhizobial infection. Plant Physiology, 179(4), 1704-1722. https://doi.org/10.1104/pp.18.01572
Liu, J., Rutten, L., Limpens, E., Van Der Molen, T., Van Velzen, R., Chen, R., ... & Bisseling, T. (2019). A remote cis-regulatory region is required for NIN expression in the pericycle to initiate nodule primordium formation in Medicago truncatula. The Plant Cell, 31(1), 68-83. https://doi.org/10.1105/tpc.18.00478
Messinese, E., Mun, J. H., Yeun, L. H., Jayaraman, D., Rougé, P., Barre, A., ... & Ané, J. M. (2007). A novel nuclear protein interacts with the symbiotic DMI3 calcium-and calmodulin-dependent protein kinase of Medicago truncatula. Molecular Plant-Microbe Interactions, 20(8), 912-921. https://doi.org/10.1094/MPMI-20-8-0912
Mortier, V., Holsters, M., & Goormachtig, S. (2012). Never too many? How legumes control nodule numbers. Plant Cell & Environment, 35(2), 245-258. https://doi.org/10.1111/j.1365-3040.2011.02406.x
Murray, J. D., Karas, B. J., Sato, S., Tabata, S., Amyot, L., & Szczyglowski, K. (2007). A cytokinin perception mutant colonized by Rhizobium in the absence of nodule organogenesis. Science, 315(5808), 101-104. https://doi.org/10.1126/science.1132514
Oldroyd, G. E. (2013). Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nature Reviews Microbiology, 11(4), 252-263. https://doi.org/10.1038/nrmicro2990
Ötvös, K., Marconi, M., Vega, A., O’Brien, J., Johnson, A., Abualia, R., ... & Benková, E. (2021). Modulation of plant root growth by nitrogen source‐defined regulation of polar auxin transport. The EMBO Journal, 40(3), e106862. https://doi.org/10.15252/embj.2020106862
Ovchinnikova, E., Journet, E. P., Chabaud, M., Cosson, V., Ratet, P., Duc, G., ... & Limpens, E. (2011). IPD3 controls the formation of nitrogen-fixing symbiosomes in pea and Medicago Spp. Molecular Plant-Microbe Interactions, 24(11), 1333-1344. https://doi.org/10.1094/MPMI-01-11-0013
Plet, J., Wasson, A., Ariel, F., Le Signor, C., Baker, D., Mathesius, U., ... & Frugier, F. (2011). MtCRE1‐dependent cytokinin signaling integrates bacterial and plant cues to coordinate symbiotic nodule organogenesis in Medicago truncatula. The Plant Journal, 65(4), 622-633. https://doi.org/10.1111/j.1365-313X.2010.04447.x
Roux, B., Rodde, N., Jardinaud, M. F., Timmers, T., Sauviac, L., Cottret, L., ... & Gamas, P. (2014). An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser‐capture microdissection coupled to RNA sequencing. The Plant Journal, 77(6), 817-837. https://doi.org/10.1111/tpj.12442
Roy, S., Liu, W., Nandety, R. S., Crook, A., Mysore, K. S., Pislariu, C. I., ... & Udvardi, M. K. (2020). Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. The Plant Cell, 32(1), 15-41. https://doi.org/10.1105/tpc.19.00279
Schiessl, K., Lilley, J. L., Lee, T., Tamvakis, I., Kohlen, W., Bailey, P. C., ... & Oldroyd, G. E. (2019). Nodule inception recruits the lateral root developmental program for symbiotic nodule organogenesis in Medicago truncatula. Current Biology, 29(21), 3657-3668. e3655. https://doi.org/10.1016/j.cub.2019.09.005
Simpson, C., Mur, L. A., Gupta, A. K., Kumari, A., & Gupta, K. J. (2017). Moving nitrogen to the centre of plant defence against pathogens. Annals of Botany, 119(5), 703-709. https://doi.org/10.1093/aob/mcw179
Singh, S., Katzer, K., Lambert, J., Cerri, M., & Parniske, M. (2014). CYCLOPS, a DNA-binding transcriptional activator, orchestrates symbiotic root nodule development. Cell Host and Microbe, 15(2), 139-152. https://doi.org/10.1016/j.chom.2014.01.011
Soyano, T., Hirakawa, H., Sato, S., Hayashi, M., & Kawaguchi, M. (2014). NODULE INCEPTION creates a long-distance negative feedback loop involved in homeostatic regulation of nodule organ production. Proceedings of the National Academy of Sciences, 111(40), 14607-14612. https://doi.org/10.1073/pnas.1412716111
Soyano, T., Kouchi, H., Hirota, A., & Hayashi, M. (2013). Nodule inception directly targets NF-Y subunit genes to regulate essential processes of root nodule development in Lotus japonicus. PLoS Genetics, 9(3), e1003352. https://doi.org/10.1371/journal.pgen.1003352
Sreedasyam, A., Plott, C., Hossain, M. S., Lovell, J. T., Grimwood, J., Jenkins, J. W., ... & Schmutz, J. (2023). JGI Plant Gene Atlas: an updateable transcriptome resource to improve functional gene descriptions across the plant kingdom. Nucleic acids research, 51(16), 8383-8401. https://doi.org/10.1093/nar/gkad616
Srivastava, A. K., Lu, Y., Zinta, G., Lang, Z., & Zhu, J. K. (2018). UTR-dependent control of gene expression in plants. Trends in Plant Science, 23(3), 248-259. https://doi.org/10.1016/j.tplants.2017.11.003
Stracke, S., Kistner, C., Yoshida, S., Mulder, L., Sato, S., Kaneko, T., ... & Parniske, M. (2002). A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature, 417(6892), 959-962. https://doi.org/10.1038/nature00841
Szklarczyk, D., Kirsch, R., Koutrouli, M., Nastou, K., Mehryary, F., Hachilif, R., ... & Von Mering, C. (2023). The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Research, 51(D1), D638-D646. https://doi.org/10.1093/nar/gkac1000
Tirichine, L., Sandal, N., Madsen, L. H., Radutoiu, S., Albrektsen, A. S., Sato, S., et al. (2007). A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Science, 315(5808), 104-107. https://doi.org/10.1126/science.1132397
Vernié, T., Kim, J., Frances, L., Ding, Y., Sun, J., Guan, D., ... & Oldroyd, G. E. (2015). The NIN transcription factor coordinates diverse nodulation programs in different tissues of the Medicago truncatula root. The Plant Cell, 27(12), 3410-3424. https://doi.org/10.1105/tpc.15.00461
Yano, K., Yoshida, S., Müller, J., Singh, S., Banba, M., Vickers, K., ... & Parniske, M (2008). CYCLOPS, a mediator of symbiotic intracellular accommodation. Proceedings of the National Academy of Sciences, 105(51), 20540-20545. https://doi.org/10.1073/pnas.0806858105