Augoff, K., McCue, B., Plow, E. F., & Sossey-Alaoui, K. (2012). miR-31 and its host gene lncRNA LOC554202 are regulated by promoter hypermethylation in triple-negative breast cancer.
Molecular Cancer, 11(1), 5.
https://doi.org/10.1186/1476-4598-11-5
Choi, H., Noh, H., Kim, K. M., Cho, I. J., Lim, S., & Han, A. (2021). Increasing mortality in korean patients with breast cancer: high mortality rate in elderly breast cancer population due to suboptimal treatment and other diseases.
Cancer Control, 28, 10732748211037914.
https://doi.org/10.1177/10732748211037914
Civelek, M., & Lusis, A. J. (2014). Systems genetics approaches to understand complex traits.
Nature Reviews Genetics, 15(1), 34-48.
https://doi.org/10.1038/nrg3575
Gomig, T. H. B., Cavalli, I. J., de Souza, R. L. R., Lucena, A. C. R., Batista, M., Machado, K. C., ... & Ribeiro, E. M. D. S. F. (2019). High-throughput mass spectrometry and bioinformatics analysis of breast cancer proteomic data.
Data in Brief, 25, 104125.
https://doi.org/10.1016/j.dib.2019.104125
Kuleshov, M. V., Jones, M. R., Rouillard, A. D., Fernandez, N. F., Duan, Q., Wang, Z., ... & Ma'ayan, A. (2016). Enrichr: a comprehensive gene set enrichment analysis web server 2016 update.
Nucleic Acids Research, 44(W1), W90-W97.
https://doi.org/10.1093/nar/gkw377
Lehmann, B. D., Colaprico, A., Silva, T. C., Chen, J., An, H., Ban, Y., ... & Chen, X. S. (2021). Multi-omics analysis identifies therapeutic vulnerabilities in triple-negative breast cancer subtypes.
Nature Communications, 12(1), 6276.
https://doi.org/10.1038/s41467-021-26502-6
Li, J., Li, Z., Wu, Y., Diao, P., Zhang, W., Wang, Y., ... & Cheng, J. (2019). Overexpression of lncRNA WWTR1‐AS1 associates with tumor aggressiveness and unfavorable survival in head‐neck squamous cell carcinoma.
Journal of Cellular Biochemistry, 120(10), 18266-18277.
https://doi.org/10.1002/jcb.29132
Loh, H. Y., Norman, B. P., Lai, K. S., Rahman, N. M. A. N. A., Alitheen, N. B. M., & Osman, M. A. (2019). The regulatory role of microRNAs in breast cancer.
International Journal of Molecular Sciences, 20(19), 4940.
https://doi.org/10.3390/ijms20194940
Lu, C., Wei, D., Zhang, Y., Wang, P., & Zhang, W. (2021). Long non-coding RNAs as potential diagnostic and prognostic biomarkers in breast cancer: progress and prospects.
Frontiers in Oncology, 11, 710538.
https://doi.org/10.3389/fonc.2021.710538
Mon‐López, D., & Tejero‐González, C. M. (2019). Validity and reliability of the TargetScan ISSF Pistol & Rifle application for measuring shooting performance.
Scandinavian Journal of Medicine and Science in Sports, 29(11), 1707-1712.
https://doi.org/10.1111/sms.13515
Neagu, A. N., Jayathirtha, M., Whitham, D., Mutsengi, P., Sullivan, I., Petre, B. A., & Darie, C. C. (2022). Proteomics-based identification of dysregulated proteins in breast cancer.
Proteomes, 10(4), 35.
https://doi.org/10.3390/proteomes10040035
Pessoa, J., Martins, M., Casimiro, S., Pérez-Plasencia, C., & Shoshan-Barmatz, V. (2022). Altered expression of proteins in cancer: function and potential therapeutic targets.
Frontiers in Oncology, 12, 949139.
https://doi.org/10.3389/978-2-88976-581-2
Qin, J., Zhou, Z., Chen, W., Wang, C., Zhang, H., Ge, G., ... & Chen, C. (2015). BAP1 promotes breast cancer cell proliferation and metastasis by deubiquitinating KLF5.
Nature Communications, 6(1), 8471.
https://doi.org/10.1038/ncomms9471
Sanchez-Vega, F., Mina, M., Armenia, J., Chatila, W. K., Luna, A., La, K. C., ... & Marra, M. A. (2018). Oncogenic signaling pathways in the cancer genome atlas.
Cell, 173(2), 321-337.
https://doi.org/10.1016/j.cell.2018.03.035
Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., ... & Ideker, T. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks.
Genome Research, 13(11), 2498-2504.
https://doi.org/10.1101/gr.1239303
Sideris, N., Dama, P., Bayraktar, S., Stiff, T., & Castellano, L. (2022). LncRNAs in breast cancer: a link to future approaches.
Cancer Gene Therapy, 29(12), 1866-1877.
https://doi.org/10.1038/s41417-022-00487-w
Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., ... & Mering, C. V. (2019). STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets.
Nucleic Acids Research, 47(D1), D607-D613.
https://doi.org/10.1093/nar/gky1131
Thomassen, M., Tan, Q., & Kruse, T. A. (2008). Gene expression meta-analysis identifies metastatic pathways and transcription factors in breast cancer.
BMC Cancer, 8, 1-12.
https://doi.org/10.1186/1471-2407-8-394
Tyanova, S., Temu, T., & Cox, J. (2016a). The MaxQuant computational platform for mass spectrometry-based shotgun proteomics.
Nature Protocols, 11(12), 2301-2319.
https://doi.org/10.1038/nprot.2016.136
Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M. Y., Geiger, T., ... & Cox, J. (2016b). The Perseus computational platform for comprehensive analysis of (prote) omics data.
Nature Methods, 13(9), 731-740.
https://doi.org/10.1038/nmeth.3901
Vizcaíno, J. A., Deutsch, E. W., Wang, R., Csordas, A., Reisinger, F., Ríos, D., ... & Hermjakob, H. (2014). ProteomeXchange provides globally coordinated proteomics data submission and dissemination.
Nature Biotechnology, 32(3), 223-226.
https://doi.org/10.1038/nbt.2839
Yu, S., Hu, C., Liu, L., Cai, L., Du, X., Yu, Q., ... & Li, W. (2020). Comprehensive analysis and establishment of a prediction model of alternative splicing events reveal the prognostic predictor and immune microenvironment signatures in triple negative breast cancer.
Journal of Translational Medicine, 18, 1-17.
https://doi.org/10.1186/s12967-020-02454-1
ZadehRashki, N., Shahmohammadi, Z., Damrodi, Z., Boozarpour, S., Negahdari, A., Mansour Moshtaghi, N., ... & Ghalandarayeshi, S. (2022). Lncrnas as regulators of the stat3 signaling pathway in cancer.
Journal of Cell and Molecular Research, 13(2), 137-150.
https://doi.org/10.31579/2640-1053/020
Zhang, R., Zhu, Z., Shen, W., Li, X., Dhoomun, D. K., & Tian, Y. (2019a). Golgi membrane protein 1 (GOLM1) promotes growth and metastasis of breast cancer cells via regulating matrix metalloproteinase-13 (MMP13).
Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 25, 847.
https://doi.org/10.12659/msm.911667
Zhang, Y., Chen, J., Wang, Y., Wang, D., Cong, W., Lai, B. S., & Zhao, Y. (2019b). Multilayer network analysis of miRNA and protein expression profiles in breast cancer patients.
Plos One, 14(4), e0202311.
https://doi.org/10.1101/384768
Zhou, X., Li, Z., & Li, M. (2024). LncRNA WWTR1-AS1 upregulates Notch3 through miR-136 to increase cancer cell stemness in cervical squamous cell carcinoma.
BMC Women's Health, 24(1), 104.
https://doi.org/10.1186/s12905-024-02905-7
Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A. H., Tanaseichuk, O., ... & Chanda, S. K. (2019). Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.
Nature Communications, 10(1), 1523.
https://doi.org/10.1038/s41467-019-09234-6