Evaluation of the Genetic Diversity and Agro-morphophysiological Traits of Bread Wheat Varieties under Postflowering Drought Stress Using Different Statistical Methods

Document Type : Research Article

Authors

1 Department of Agriculture (Plant Breeding and Genetics), Payame Noor University, Tehran, Iran

2 Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences (MATE), Budapest, Hungary

Abstract

Postanthesis drought stress in wheat cultivation typically occurs in semiarid regions due to limited irrigation water availability and yield loss during cereal production. The present study was designed and implemented to investigate the agronomical traits of bread wheat varieties in response to post-flowering drought stress in a randomized complete block design in Hamedan Province (Asadabad), Iran. The results of the trait variance analysis under both stress and control conditions indicated that there were significant differences (p≤0.05) among the cultivars in terms of most studied traits. The cluster analysis classified the studied varieties into three groups, and the correctness of the groupings was confirmed by the analysis of the discriminant function. According to the results of the principal component analysis, four components explained 79.6 and 79% of the variance in the total data under the control and stress conditions, respectively. Factor analysis based on principal component analysis of the control plants revealed that three factors accounted for 64.68% of the total changes, including the first factor (yield), the second factor (characteristics related to height) and the third factor (harvest index), whereas the same analysis of the stressed plants at the end of the season indicated that three factors were behind 70.361% of the changes (yield and greenness, traits related to height, and plant moisture content). Based on all statistical analyses, (both univariate and multivariate of 14 studied genotypes), three winter-type varieties (Pishgam, Zare, and Mehan) were found to have significantly better yield under the drought stress conditions.

Keywords

Main Subjects


Aghaee, M., Mohammadi, R., & Nabovati, S. (2010). Agro-morphological characterization of durum wheat accessions using pattern analysis. Australian Journal of Crop Science, 4(7),   505-514.‏ https://search.informit.org/doi/abs/10.3316/informit.536537388993889
Ahmed, A. A., Dawood, M. F., Elfarash, A., Mohamed, E. A., Hussein, M. Y., Börner, A., & Sallam, A. (2022). Genetic and morpho-physiological analyses of the tolerance and recovery mechanisms in seedling stage spring wheat under drought stress. Frontiers in Genetics, 13,       1010272.‏ https://doi.org/10.3389/fgene.2022.1010272
Ahmed, H. G. M. D., Iqbal, M. N., Iqbal, M. A., Zeng, Y., Ullah, A., Iqbal, M., ... & Hussain, S. (2021). Genome-wide association mapping for stomata and yield indices in bread wheat under water limited conditions. Agronomy, 11(8),        1646.‏ https://doi.org/10.3390/agronomy11081646
Ahmed, H. G. M. D., LI, M. J., Khan, S. H., & Kashif, M. (2019). Early selection of bread wheat genotypes using morphological and photosynthetic attributes conferring drought tolerance. Journal of Integrative Agriculture, 18(11), 2483-2491. https://doi.org/10.1016/S20953119(18)62083-0
‏Al-Ashkar, I., Al-Suhaibani, N., Abdella, K., Sallam, M., Alotaibi, M., & Seleiman, M. F. (2021). Combining genetic and multidimensional analyses to identify interpretive traits related to water shortage tolerance as an indirect selection tool for detecting genotypes of drought tolerance in wheat breeding. Plants, 10(5), 931.‏ https://doi.org/10.3390/plants10050931
Al-Ashkar, I., Sallam, M., Ghazy, A., Ibrahim, A., Alotaibi, M., Ullah, N., & Al-Doss, A. (2023). Agro-physiological indices and multidimensional analyses for detecting heat tolerance in wheat genotypes. Agronomy, 13(1),           154‏. https://doi.org/10.3390/agronomy13010154
Ali, N., Hussain, I., Ali, S., Khan, N. U., & Hussain, I. (2021). Multivariate analysis for various quantitative traits in wheat advanced lines. Saudi Journal of Biological Sciences, 28(1),           347-352.‏ https://doi.org/10.1016/j.sjbs.2020.10.011
Barrs, H. D., & Weatherley, P. E. (1962). A re-examination of the relative turgidity technique for estimating water deficits in leaves. Australian Journal of Biological Sciences,         15(3),   413-428.‏ https://doi.org/10.1071/BI9620413
Boussakouran, A., Sakar, E. H., El Yamani, M., & Rharrabti, Y. (2019). Morphological traits associated with drought stress tolerance in six Moroccan durum wheat varieties released between 1984 and 2007. Journal of Crop Science and Biotechnology, 22, 345-353.‏ https://doi.org/10.1007/s12892-019-0138-0
Cai, K., Chen, X., Han, Z., Wu, X., Zhang, S., Li, Q., ... & Zeng, F. (2020). Screening of worldwide barley collection for drought tolerance: the assessment of various physiological measures as the selection criteria. Frontiers in Plant Science, 11, 563745.‏ https://doi.org/10.3389/fpls.2020.01159
Chaghakaboodi, Z., Kakaei, M., & Zebarjadi, A. (2021). Study of relationship between some agro-physiological traits with drought tolerance in rapeseed (Brassica napus L.) genotypes. Central Asian Journal of Plant Science        Innovation,      1(1),     1-9.‏ https://doi.org/10.22034/CAJPSI.2021.01.01
Derese, S. A., Shimelis, H., Mwadzingeni, L., & Laing, M. (2018). Agro-morphological characterisation and selection of sorghum landraces. Acta Agriculturae Scandinavica, Soil and Plant Science, 68(7), 585-595.‏ https://doi.org/10.1080/09064710.2018.1448884
El Sabagh, A., Islam, M. S., Skalicky, M., Ali Raza, M., Singh, K., Anwar Hossain, M., ... & Arshad, A. (2021). Salinity stress in wheat (Triticum aestivum L.) in the changing climate: adaptation and management strategies. Frontiers in Agronomy, 3, 661932.‏ https://doi.org/10.3389/fagro.2021.661932
Elbasyoni, I. S., Eltaher, S., Morsy, S., Mashaheet, A. M., Abdallah, A. M., Ali, H. G., ... & Frels, K. (2022). Novel single-nucleotide variants for morpho-physiological traits involved in enhancing drought stress tolerance in Barley. Plants, 11(22), 3072.‏ https://doi.org/10.3390/plants11223072
Guttieri, M. J., Stark, J. C., O'Brien, K., & Souza, E. (2001). Relative sensitivity of spring wheat grain yield and quality parameters to moisture deficit. Crop Science, 41(2),          327-335.‏ https://doi.org/10.2135/cropsci2001.412327x
Istanbuli, T., Baum, M., Touchan, H., & Hamwieh, A. (2020). Evaluation of morpho-physiological traits under drought stress conditions in barley (Hordeum vulgare L.). Photosynthetica,           58(4).‏ 1059-1067. https://doi.org/10.32615/ps.2020.041
Lacko-Bartošová, M., Lacko-Bartošová, L., Kaur, A., & Moudrý, J. (2022). Comparative assessment of agro-morphological and quality traits of ancient wheat cultivars grown under organic farming. Agriculture, 12(9), 1476.‏ https://doi.org/10.3390/agriculture12091476
Memon, H. M. U., Sial, M. A., & Bux, H. (2022). Evaluation of bread wheat genotypes for water stress tolerance using agronomic traits.     Acta     Agrobotanica, 75(1). ‏https://doi.org/10.5586/aa.751
Mohammadi, R., Etminan, A., & Shoshtari, L. I. A. (2019). Agro-physiological characterization of durum wheat genotypes under drought conditions. Experimental Agriculture,     55(3),   484-499.‏ https://doi:10.1017/S0014479718000133
Mohi-Ud-Din, M., Hossain, M. A., Rohman, M. M., Uddin, M. N., Haque, M. S., Ahmed, J. U., ... & Mostofa, M. G. (2021). Multivariate analysis of morpho-physiological traits reveals differential drought tolerance potential of bread wheat genotypes at the seedling      stage.   Plants,             10(5),   879.‏ https://doi.org/10.3390/plants10050879
Morsy, S. M., Elbasyoni, I. S., Abdallah, A. M., & Baenziger, P. S. (2022). Imposing water deficit on modern and wild wheat collections to identify drought‐resilient genotypes. Journal of Agronomy and Crop Science, 208(4),        427-440.‏ https://doi.org/10.1111/jac.12493
Mulugeta, B., Tesfaye, K., Geleta, M., Johansson, E., Hailesilassie, T., Hammenhag, C., ... & Ortiz, R. (2022). Multivariate analyses of Ethiopian durum wheat revealed stable and high yielding genotypes. PloS One, 17(8),        e0273008.‏ https://doi.org/10.1371/journal.pone.0273008
Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. Philosophical        Magazine,           2(11),   559-572.‏ https://doi.org/10.1080/14786440109462720
Rawson, H. M., Richards, R. A., & Munns, R. (1988). An examination of selection criteria for salt tolerance in wheat, barley and triticale genotypes. Australian Journal of Agricultural Research,          39(5),   759-772. https://doi.org/10.1071/AR9880759
Shahid, S., Ali, Q., Ali, S., Al-Misned, F. A., & Maqbool, S. (2022). Water deficit stress tolerance potential of newly developed wheat genotypes for better yield based on agronomic traits and stress tolerance indices: physio-biochemical responses, lipid peroxidation and antioxidative defense mechanism.             Plants,             11(3),   466.‏ https://doi.org/10.3390/plants11030466
Wani, S. H., Sheikh, F. A., Najeeb, S., Sofi, M. U. D., Iqbal, A. M., Kordrostami, M., ... & Jeberson, M. S. (2018). Genetic variability study in bread wheat (Triticum aestivum L.) under temperate conditions. Current Agriculture Research Journal, 6(3).‏ http://dx.doi.org/10.12944/CARJ.6.3.06
Yeater, K. M., Bollero, G. A., Bullock, D. G., Rayburn, A. L., & Rodriguez-Zas, S. (2004). Assessment of genetic variation in hairy vetch using canonical discriminant analysis. Crop Science,        44(1),   185-189.‏ https://doi.org/10.2135/cropsci2004.1850
Zafar, M. M., Manan, A., Razzaq, A., Zulfqar, M., Saeed, A., Kashif, M., ... & Ren, M. (2021). Exploiting agronomic and biochemical traits to develop heat resilient cotton cultivars under climate change scenarios.   Agronomy,        11(9),   1885. ‏https://doi.org/10.3390/agronomy11091885