Deciphering the Regulatory Network of Some Key Drought-responsive Genes and microRNAs in Canola

Document Type : Research Article

Authors

1 Department of Plant Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran

2 BioGenTAC lnc., Technology Incubator of Agricultural Biotechnology Research Institute of Iran-North Branch, Rasht, Iran

3 Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran

Abstract

Drought is a major abiotic stress that constrains the growth and yield of Canola. This study was conducted to obtain a greater insight into the drought-related hub genes, their regulatory network and relative expression pattern in tolerant and susceptible genotypes of Canola under drought stress. In present study, we sought to find some of key genes and their regulatory network involved in drought stress in Canola, and analyzed gene network, functional pathways, regulatory microRNAs (miRNAs) based on RNA-sequencing data analysis and comparing the relative expression pattern of hub genes in tolerant and susceptible genotypes by Real-time PCR technique. A total of 5275 differentially expressed genes were identified, with 3794 up-regulated and 1481 down-regulated genes under drought stress. The result showed that the most significant biological process of up-regulated and down-regulated genes enriched in response to water deprivation and light stimulus, respectively. The result demonstrated that the ACP4, RCA, FNR1, HCEF1, PRK, GDC, and MDH were some of hub genes in drought stress. The hub genes were regulated by vital drought-responsive miRNAs such as miR9558, miR854, miR172, miR834, miR390, and miR167. The relative expression pattern of investigated hub genes was different in tolerant and susceptible genotypes of Canola. The identified drought-responsive hub genes appear to play an essential role in the regulation of carbon metabolism, activation of stress signaling, and the regulation of the stromal NADP(H) redox state in response to drought stress. They are regulated by important miRNAs in a complex regulatory network that worth being considered in genetic engineering programs of Canola.

Keywords

Main Subjects


Aranjuelo, I., Molero, G., Erice, G., Avice, J. C., & Nogues, S. (2011). Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago sativa L.). Journal of Experimental Botany, 62(1), 111-123. https://doi.org/10.1093/jxb/erq249
Ceylan, K. B., Ceylan, Y., Ustaoğlu, B., Baloğlu, M. C., & Altunoğlu, Y. Ç. (2019). Molecular identification and characterization of LEA proteins in jujube genome. Kastamonu University Journal of Engineering and Sciences, 5(2), 101-146. https://dergipark.org.tr/en/pub/kastamonujes
Corpas, F. J., González-Gordo, S., Palma, J. M. (2021). Nitric oxide and hydrogen sulfide modulate the NADPH-generating enzymatic system in higher plants. Journal of Experimental Botany, 72, 830-847. https://doi.org/10.1093/jxb/eraa440
Dou, J., Duan, S., Umer, M. J., Xie, K., Wang, Y., Kang, Q., ... & Zhao, F. (2022). Genome-wide analysis of IQD proteins and ectopic expression of watermelon ClIQD24 in tomato suggests its important role in regulating fruit shape. Frontiers in Genetics, 13, 993218. https://doi.org/10.3389/fgene
Fasani, E., DalCorso, G., Zorzi, G., Vitulo, N., & Furini, A. (2021). Comparative analysis identifies micro‐RNA associated with nutrient homeostasis, development and stress response in Arabidopsis thaliana upon high Zn and metal hyperaccumulator Arabidopsis halleri. Physiologia Plantarum, 173(3), 920-934. https://doi.org/10.1111/ppl.13488
Fei, X., Li, J., Kong, L., Hu, H., Tian, J., Liu, Y., & Wei, A. (2020). miRNAs and their target genes regulate the antioxidant system of Zanthoxylum bungeanum under drought stress. Plant Physiology and Biochemistry, 150, 196-203. https://doi.org/10.1016/j.plaphy.2020.01.040
Goodwin, S. B., & Sutter, T. R. (2009). Microarray analysis of Arabidopsis genome response to aluminum stress. Biologia Plantarum, 53, 85-99. https://doi.org/10.1007/s10535-009-0012-4
He, Q., Zhu, S., & Zhang, B. (2014). MicroRNA–target gene responses to lead-induced stress in cotton (Gossypium hirsutum L.). Functional and Integrative Genomics, 14, 507-515. https://doi.org/10.1007/s10142-014-0378-z
Hebbelmann, I., Selinski, J., Wehmeyer, C., Goss, T., Voss, I., Mulo, P., ... & Scheibe, R. (2012). Multiple strategies to prevent oxidative stress in Arabidopsis plants lacking the malate valve enzyme NADP-malate dehydrogenase. Journal of Experimental Botany, 63(3), 1445-1459. https://doi.org/10.1093/jxb/err386
Huang, J., Xue, C., Wang, H., Wang, L., Schmidt, W., Shen, R., & Lan, P. (2017). Genes of ACYL CARRIER PROTEIN family show different expression profiles and overexpression of ACYL CARRIER PROTEIN 5 modulates fatty acid composition and enhances salt stress tolerance in Arabidopsis. Frontiers in Plant Science, 8, 987.  https://doi.org/10.3389/fpls.2017.00987
Ijaz, U., Ali, M. A., Nadeem, H., Tan, L., & Azeem, F. (2020). RNA world and heat stress tolerance in plants. Physiological, Molecular and Genetic Perspectives, 167-187. https://doi.org/10.1002/9781119432401.ch8
Jung, K. W., Cho, C., Lee, S., Kim, J. H., Bai, H. W., Park, Y. D., ... & Lee, D. G. (2019). Identification of γ-radiation-responsive proteins in Arabidopsis thaliana. Journal of Radiation Industry, 13(2), 83-91. https://www.kns.org
Kõressaar, T., Lepamets, M., Kaplinski, L., Raime, K., Andreson, R., & Remm, M. (2018). Primer3_masker: integrating masking of template sequence with primer design software. Bioinformatics, 34(11), 1937-1938. https://doi.org/10.1093/bioinformatics/bty036
Mahdavi Mashaki, K., Garg, V., Nasrollahnezhad Ghomi, A. A., Kudapa, H., Chitikineni, A., Zaynali Nezhad, K., ... & Thudi, M. (2018). RNA-Seq analysis revealed genes associated with drought stress response in kabuli chickpea (Cicer arietinum L.). PLoS One, 13(6), e0199774. https://doi.org/10.1371/journal.pone.0199774
Mohsenzadeh Golfazani, M., Taghvaei, M. M., Samizadeh Lahiji, H., Ashery, S., & Raza, A. (2022). Investigation of proteins’ interaction network and the expression pattern of genes involved in the ABA biogenesis and antioxidant system under methanol spray in drought-stressed rapeseed. 3 Biotech, 12(9), 217. https://doi.org/10.1007/s13205-022-03290-4
Moradyar, M., Zamani, M., Motallebi, M., Jourabchi, E. (2023). Analysis of the effect of chimeric chitinase expressed by synthetic promoter in T2 generation of transgenic canola. Journal of Genetic Resources, 9(1), 48-58. https://doi.org/10.22080/jgr.2023.24506.1336
Morsi, N. A., Hashem, O. S., El-Hady, M. A. A., Abd-Elkrem, Y. M., El-temsah, M. E., Galal, E. G., ... & Abdelkader, M. A. (2023). Assessing drought tolerance of newly developed tissue-cultured canola genotypes under varying irrigation regimes. Agronomy, 13(3), 836. https://doi.org/10.3390/agronomy13030836
Nadarajah, K., & Kumar, I. S. (2019). Drought response in rice: The miRNA story. International Journal of Molecular Sciences, 20(15), 3766. https://doi.org/10.3390/ijms20153766
Pandita, D. (2022). Role of miRNA technology and miRNAs in abiotic and biotic stress resilience. In Plant Perspectives to Global Climate Changes. Academic Press. https://doi.org/10.1016/B978-0-323-85665-2.00015-7
Pasandideh Arjmand, M., Samizadeh Lahiji, H., Mohsenzadeh Golfazani, M., & Biglouei, M. H. (2023a). New insights on the regulatory network of drought-responsive key genes in Arabidopsis thaliana. Genetica, 151(1), 29-45. https://doi.org/10.1007/s10709-022-00177-3
Pasandideh Arjmand, M., Samizadeh Lahiji, H., Mohsenzadeh Golfazani, M., & Biglouei, M. H. (2023b). Evaluation of protein’s interaction and the regulatory network of some drought-responsive genes in Canola under drought and re-watering conditions. Physiology and Molecular Biology of Plants, 29(8), 1085-1102. https://doi.org/10.1007/s12298-023-01345-1
Rakhmetullina, A., Zielenkiewicz, P., Pyrkova, A., Uteulin, K., & Ivashchenko, A. (2021). Prediction of characteristics of interactions of miRNA with mRNA of GRAS, ERF, C2H2 genes of A. thaliana, O. sativa and Z. mays. Current Plant Biology, 28, 100224. https://doi.org/10.1016/j.cpb.2021.100224
Schiessl, S. V., Quezada-Martinez, D., Orantes-Bonilla, M., & Snowdon, R. J. (2020). Transcriptomics reveal high regulatory diversity of drought tolerance strategies in a biennial oil crop. Plant Science, 297, 110515. https://doi.org/10.1016/j.plantsci.2020.110515
Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature protocols, 3(6), 1101-1108. https://doi.org/10.1038/nprot.2008.73
Shahriari, A. G., Soltani, Z., Tahmasebi, A., & Poczai, P. (2022). Integrative system biology analysis of transcriptomic responses to drought stress in soybean (Glycine max L.). Genes, 13(10), 1732. https://doi.org/10.3390/genes13101732
Shao, C., Wu, Q., Qiu, J., Jin, S., Zhang, B., Qian, J., ... & Meng, Y. (2013). Identification of novel microRNA-like-coding sites on the long-stem microRNA precursors in Arabidopsis. Gene, 527(2), 477-483. https://doi.org/10.1016/j.gene.2013.06.070
Shikanai, T. (2014). Central role of cyclic electron transport around photosystem I in the regulation of photosynthesis. Current Opinion in Biotechnology, 26, 25-30. https://doi.org/10.1016/j.copbio.2013.08.012
Singroha, G., Sharma, P., & Sunkur, R. (2021). Current status of microRNA‐mediated regulation of drought stress responses in cereals. Physiologia Plantarum, 172(3), 1808-1821. https://doi.org/10.1111/ppl.13451
Srivastava, A. K., Sablok, G., Hackenberg, M., Deshpande, U., & Suprasanna, P. (2017). Thiourea priming enhances salt tolerance through co-ordinated regulation of microRNAs and hormones in Brassica juncea. Scientific Reports, 7(1), 45490. http://doi.org/10.1038/srep45490
Srivastava, S., Srivastava, A. K., Suprasanna, P., & D’souza, S. F. (2013). Identification and profiling of arsenic stress-induced microRNAs in Brassica juncea. Journal of Experimental Botany, 64(1), 303-315. https://doi.org/10.1093/jxb/ers333
Strand, D. D., Livingston, A. K., Satoh-Cruz, M., Froehlich, J. E., Maurino, V. G., & Kramer, D. M. (2015). Activation of cyclic electron flow by hydrogen peroxide in vivo. Proceedings of the National Academy of Sciences, 112(17), 5539-5544. https://doi.org/10.1073/pnas.1418223112
Suganami, M., Suzuki, Y., Tazoe, Y., Yamori, W., & Makino, A. (2021). Co-overproducing Rubisco and Rubisco activase enhances photosynthesis in the optimal temperature range in Rice. Plant Physiology, 185(1), 108-119. https://doi.org/10.1093/plphys/kiaa026
Tahmasebi, A., Khahani, B., Tavakol, E., Afsharifar, A., & Shahid, M. S. (2021). Microarray analysis of Arabidopsis thaliana exposed to single and mixed infections with Cucumber mosaic virus and turnip viruses. Physiology and Molecular Biology of Plants, 27, 11-27. https://doi.org/10.1007/s12298-021-00925-3
Tang, C. N., Wan Abdullah, W. M. A. N., Wee, C. Y., Balia Yusof, Z. N., Yap, W. S., Cheng, W. H., ... & Lai, K. S. (2023). Promoter Cis-element analyses reveal the function of αVPE in drought stress response of Arabidopsis. Biology, 12(3), 430. https://doi.org/10.3390/biology12030430
Verma, D., & Singh, K. (2021). Understanding role of glutathione reductase gene family in drought and heat stresses in Brassica juncea and B. rapa. Environmental and Experimental Botany, 190, 104595. https://doi.org/10.1016/j.envexpbot.2021.104595
Vidal, E. A., Moyano, T. C., Krouk, G., Katari, M. S., Tanurdzic, M., McCombie, W. R., ... & Gutiérrez, R. A. (2013). Integrated RNA-seq and sRNA-seq analysis identifies novel nitrate-responsive genes in Arabidopsis thaliana roots. BMC Genomics, 14(1), 1-15. https://doi.org/10.1186/1471-2164-14-701
Yin, X., Guo, X., Hu, L., Li, S., Chen, Y., Wang, J., ... & Hu, Z. (2022). Genome-wide characterization of DGATs and their expression diversity analysis in response to abiotic stresses in Brassica napus. Plants, 11(9), 1156. https://doi.org/10.3390/plants11091156
Yu, A., Xie, Y., Pan, X., Zhang, H., Cao, P., Su, X., ... & Li, M. (2020). Photosynthetic phosphoribulokinase structures: Enzymatic mechanisms and the redox regulation of the Calvin-Benson-Bassham cycle. The Plant Cell, 32(5), 1556-1573. https://doi.org/10.1105/tpc.19.00642
Yu, X., Wang, H., Lu, Y., de Ruiter, M., Cariaso, M., Prins, M., ... & He, Y. (2012). Identification of conserved and novel microRNAs that are responsive to heat stress in Brassica rapa. Journal of Experimental Botany, 63(2), 1025-1038. https://doi.org/10.1093/jxb/err337
Zhang, X., Fan, B., Yu, Z., Nie, L., Zhao, Y., Yu, X., ... & Ma, Y. (2019). Functional analysis of three miRNAs in agropyron mongolicum keng under drought stress. Agronomy, 9(10), 661. https://doi.org/10.3390/agronomy9100661