Aranjuelo, I., Molero, G., Erice, G., Avice, J. C., & Nogues, S. (2011). Plant physiology and proteomics reveals the leaf response to drought in alfalfa (
Medicago sativa L.).
Journal of Experimental Botany, 62(1), 111-123.
https://doi.org/10.1093/jxb/erq249
Ceylan, K. B., Ceylan, Y., Ustaoğlu, B., Baloğlu, M. C., & Altunoğlu, Y. Ç. (2019). Molecular identification and characterization of LEA proteins in jujube genome.
Kastamonu University Journal of Engineering and Sciences, 5(2), 101-146.
https://dergipark.org.tr/en/pub/kastamonujes
Corpas, F. J., González-Gordo, S., Palma, J. M. (2021). Nitric oxide and hydrogen sulfide modulate the NADPH-generating enzymatic system in higher plants.
Journal of Experimental Botany, 72, 830-847.
https://doi.org/10.1093/jxb/eraa440
Dou, J., Duan, S., Umer, M. J., Xie, K., Wang, Y., Kang, Q., ... & Zhao, F. (2022). Genome-wide analysis of IQD proteins and ectopic expression of watermelon ClIQD24 in tomato suggests its important role in regulating fruit shape.
Frontiers in Genetics, 13, 993218.
https://doi.org/10.3389/fgene
Fasani, E., DalCorso, G., Zorzi, G., Vitulo, N., & Furini, A. (2021). Comparative analysis identifies micro‐RNA associated with nutrient homeostasis, development and stress response in
Arabidopsis thaliana upon high Zn and metal hyperaccumulator
Arabidopsis halleri.
Physiologia Plantarum, 173(3), 920-934.
https://doi.org/10.1111/ppl.13488
Fei, X., Li, J., Kong, L., Hu, H., Tian, J., Liu, Y., & Wei, A. (2020). miRNAs and their target genes regulate the antioxidant system of
Zanthoxylum bungeanum under drought stress.
Plant Physiology and Biochemistry, 150, 196-203.
https://doi.org/10.1016/j.plaphy.2020.01.040
He, Q., Zhu, S., & Zhang, B. (2014). MicroRNA–target gene responses to lead-induced stress in cotton (
Gossypium hirsutum L.).
Functional and Integrative Genomics, 14, 507-515.
https://doi.org/10.1007/s10142-014-0378-z
Hebbelmann, I., Selinski, J., Wehmeyer, C., Goss, T., Voss, I., Mulo, P., ... & Scheibe, R. (2012). Multiple strategies to prevent oxidative stress in
Arabidopsis plants lacking the malate valve enzyme NADP-malate dehydrogenase.
Journal of Experimental Botany, 63(3), 1445-1459.
https://doi.org/10.1093/jxb/err386
Huang, J., Xue, C., Wang, H., Wang, L., Schmidt, W., Shen, R., & Lan, P. (2017). Genes of ACYL CARRIER PROTEIN family show different expression profiles and overexpression of ACYL CARRIER PROTEIN 5 modulates fatty acid composition and enhances salt stress tolerance in Arabidopsis.
Frontiers in Plant Science, 8, 987.
https://doi.org/10.3389/fpls.2017.00987
Ijaz, U., Ali, M. A., Nadeem, H., Tan, L., & Azeem, F. (2020). RNA world and heat stress tolerance in plants.
Physiological, Molecular and Genetic Perspectives, 167-187.
https://doi.org/10.1002/9781119432401.ch8
Jung, K. W., Cho, C., Lee, S., Kim, J. H., Bai, H. W., Park, Y. D., ... & Lee, D. G. (2019). Identification of γ-radiation-responsive proteins in
Arabidopsis thaliana.
Journal of Radiation Industry, 13(2), 83-91.
https://www.kns.org
Kõressaar, T., Lepamets, M., Kaplinski, L., Raime, K., Andreson, R., & Remm, M. (2018). Primer3_masker: integrating masking of template sequence with primer design software.
Bioinformatics, 34(11), 1937-1938.
https://doi.org/10.1093/bioinformatics/bty036
Mahdavi Mashaki, K., Garg, V., Nasrollahnezhad Ghomi, A. A., Kudapa, H., Chitikineni, A., Zaynali Nezhad, K., ... & Thudi, M. (2018). RNA-Seq analysis revealed genes associated with drought stress response in kabuli chickpea (
Cicer arietinum L.).
PLoS One, 13(6), e0199774.
https://doi.org/10.1371/journal.pone.0199774
Mohsenzadeh Golfazani, M., Taghvaei, M. M., Samizadeh Lahiji, H., Ashery, S., & Raza, A. (2022). Investigation of proteins’ interaction network and the expression pattern of genes involved in the ABA biogenesis and antioxidant system under methanol spray in drought-stressed rapeseed.
3 Biotech, 12(9), 217.
https://doi.org/10.1007/s13205-022-03290-4
Moradyar, M., Zamani, M., Motallebi, M., Jourabchi, E. (2023). Analysis of the effect of chimeric chitinase expressed by synthetic promoter in T2 generation of transgenic canola.
Journal of Genetic Resources, 9(1), 48-58.
https://doi.org/10.22080/jgr.2023.24506.1336
Morsi, N. A., Hashem, O. S., El-Hady, M. A. A., Abd-Elkrem, Y. M., El-temsah, M. E., Galal, E. G., ... & Abdelkader, M. A. (2023). Assessing drought tolerance of newly developed tissue-cultured canola genotypes under varying irrigation regimes.
Agronomy, 13(3), 836.
https://doi.org/10.3390/agronomy13030836
Pasandideh Arjmand, M., Samizadeh Lahiji, H., Mohsenzadeh Golfazani, M., & Biglouei, M. H. (2023a). New insights on the regulatory network of drought-responsive key genes in
Arabidopsis thaliana.
Genetica, 151(1), 29-45.
https://doi.org/10.1007/s10709-022-00177-3
Pasandideh Arjmand, M., Samizadeh Lahiji, H., Mohsenzadeh Golfazani, M., & Biglouei, M. H. (2023b). Evaluation of protein’s interaction and the regulatory network of some drought-responsive genes in Canola under drought and re-watering conditions.
Physiology and Molecular Biology of Plants, 29(8), 1085-1102.
https://doi.org/10.1007/s12298-023-01345-1
Rakhmetullina, A., Zielenkiewicz, P., Pyrkova, A., Uteulin, K., & Ivashchenko, A. (2021). Prediction of characteristics of interactions of miRNA with mRNA of GRAS, ERF, C2H2 genes of
A. thaliana,
O. sativa and
Z. mays.
Current Plant Biology, 28, 100224.
https://doi.org/10.1016/j.cpb.2021.100224
Schiessl, S. V., Quezada-Martinez, D., Orantes-Bonilla, M., & Snowdon, R. J. (2020). Transcriptomics reveal high regulatory diversity of drought tolerance strategies in a biennial oil crop
. Plant Science, 297, 110515.
https://doi.org/10.1016/j.plantsci.2020.110515
Shahriari, A. G., Soltani, Z., Tahmasebi, A., & Poczai, P. (2022). Integrative system biology analysis of transcriptomic responses to drought stress in soybean (
Glycine max L.).
Genes, 13(10), 1732.
https://doi.org/10.3390/genes13101732
Shao, C., Wu, Q., Qiu, J., Jin, S., Zhang, B., Qian, J., ... & Meng, Y. (2013). Identification of novel microRNA-like-coding sites on the long-stem microRNA precursors in
Arabidopsis.
Gene, 527(2), 477-483.
https://doi.org/10.1016/j.gene.2013.06.070
Singroha, G., Sharma, P., & Sunkur, R. (2021). Current status of microRNA‐mediated regulation of drought stress responses in cereals.
Physiologia Plantarum, 172(3), 1808-1821.
https://doi.org/10.1111/ppl.13451
Srivastava, A. K., Sablok, G., Hackenberg, M., Deshpande, U., & Suprasanna, P. (2017). Thiourea priming enhances salt tolerance through co-ordinated regulation of microRNAs and hormones in
Brassica juncea.
Scientific Reports, 7(1), 45490.
http://doi.org/10.1038/srep45490
Srivastava, S., Srivastava, A. K., Suprasanna, P., & D’souza, S. F. (2013). Identification and profiling of arsenic stress-induced microRNAs in
Brassica juncea.
Journal of Experimental Botany, 64(1), 303-315.
https://doi.org/10.1093/jxb/ers333
Strand, D. D., Livingston, A. K., Satoh-Cruz, M., Froehlich, J. E., Maurino, V. G., & Kramer, D. M. (2015). Activation of cyclic electron flow by hydrogen peroxide
in vivo.
Proceedings of the National Academy of Sciences, 112(17), 5539-5544.
https://doi.org/10.1073/pnas.1418223112
Suganami, M., Suzuki, Y., Tazoe, Y., Yamori, W., & Makino, A. (2021). Co-overproducing Rubisco and Rubisco activase enhances photosynthesis in the optimal temperature range in Rice.
Plant Physiology, 185(1), 108-119.
https://doi.org/10.1093/plphys/kiaa026
Tahmasebi, A., Khahani, B., Tavakol, E., Afsharifar, A., & Shahid, M. S. (2021). Microarray analysis of
Arabidopsis thaliana exposed to single and mixed infections with
Cucumber mosaic virus and turnip viruses.
Physiology and Molecular Biology of Plants, 27, 11-27.
https://doi.org/10.1007/s12298-021-00925-3
Tang, C. N., Wan Abdullah, W. M. A. N., Wee, C. Y., Balia Yusof, Z. N., Yap, W. S., Cheng, W. H., ... & Lai, K. S. (2023). Promoter Cis-element analyses reveal the function of αVPE in drought stress response of
Arabidopsis.
Biology, 12(3), 430.
https://doi.org/10.3390/biology12030430
Verma, D., & Singh, K. (2021). Understanding role of glutathione reductase gene family in drought and heat stresses in
Brassica juncea and
B. rapa.
Environmental and Experimental Botany, 190, 104595.
https://doi.org/10.1016/j.envexpbot.2021.104595
Vidal, E. A., Moyano, T. C., Krouk, G., Katari, M. S., Tanurdzic, M., McCombie, W. R., ... & Gutiérrez, R. A. (2013). Integrated RNA-seq and sRNA-seq analysis identifies novel nitrate-responsive genes in
Arabidopsis thaliana roots.
BMC Genomics, 14(1), 1-15.
https://doi.org/10.1186/1471-2164-14-701
Yin, X., Guo, X., Hu, L., Li, S., Chen, Y., Wang, J., ... & Hu, Z. (2022). Genome-wide characterization of DGATs and their expression diversity analysis in response to abiotic stresses in
Brassica napus.
Plants, 11(9), 1156.
https://doi.org/10.3390/plants11091156
Yu, A., Xie, Y., Pan, X., Zhang, H., Cao, P., Su, X., ... & Li, M. (2020). Photosynthetic phosphoribulokinase structures: Enzymatic mechanisms and the redox regulation of the Calvin-Benson-Bassham cycle
. The Plant Cell, 32(5), 1556-1573.
https://doi.org/10.1105/tpc.19.00642
Yu, X., Wang, H., Lu, Y., de Ruiter, M., Cariaso, M., Prins, M., ... & He, Y. (2012). Identification of conserved and novel microRNAs that are responsive to heat stress in
Brassica rapa.
Journal of Experimental Botany, 63(2), 1025-1038.
https://doi.org/10.1093/jxb/err337
Zhang, X., Fan, B., Yu, Z., Nie, L., Zhao, Y., Yu, X., ... & Ma, Y. (2019). Functional analysis of three miRNAs in
agropyron mongolicum keng under drought stress.
Agronomy,
9(10), 661.
https://doi.org/10.3390/agronomy9100661