Abhale, Y. K., Sasane, A. V., Chavan, A. P., Shekh, S. H., Deshmukh, K. K., Bhansali, S., ... & Mhaske, P. C. (2017). Synthesis and antimycobacterial screening of new thiazolyl-oxazole derivatives.
European Journal of Medicinal Chemistry, 132, 333-340.
https://doi.org/10.1016/j.ejmech.2017.03.065
Apostol, T. V., Chifiriuc, M. C., Nitulescu, G. M., Olaru, O. T., Barbuceanu, S. F., Socea, L. I., ... & Marutescu, L. G. (2022).
In Silico and in vitro assessment of antimicrobial and antibiofilm activity of some 1, 3-Oxazole-Based compounds and their isosteric analogues.
Applied Sciences, 12(11), 5571.
https://doi.org/10.3390/app12115571
Bala, S., Saini, M., & Kamboj, S. (2011). Methods for synthesis of Oxazolones: a review.
International Journal of ChemTech Research, 3(3), 1102-1118.
https://sphinxsai.com/chemtech.php
CLSI. (2018). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. CLSI standard M07. Wayne, PA: Clinical and Laboratory Standards Institute, USA.
Denizot, F., & Lang, R. (1986). Lang, Rapid colorimetric assay for cell growth and survival: modifications to the tetrazolium dye procedure giving improved sensitivity and reliability.
Journal of Immunological Methods, 89(2), 271-277.
https://doi.org/10.1016/0022-1759(86)90368-6
Fawzi, M., Bimoussa, A., Laamari, Y., Oussidi, A. N. A., Oubella, A., Ketatni, E. M., ... & Auhmani, A. (2023). New (S)-verbenone-isoxazoline-1, 3, 4-thiadiazole hybrids: synthesis, anticancer activity and apoptosis-inducing effect.
Future Medicinal Chemistry, 15(17), 1603-1619.
https://doi.org/10.4155/fmc-2023-0173
Gallego-Hernandez, A. L., DePas, W. H., Park, J. H., Teschler, J. K., Hartmann, R., Jeckel, H., ... & Yildiz, F. H. (2020). Upregulation of virulence genes promotes
Vibrio cholerae biofilm hyperinfectivity.
Proceedings of the National Academy of Sciences, 117(20), 11010-11017.
https://doi.org/10.1073/pnas.1916571117
Herbst, R. M., Shemin, D. (1939). Acetylglycine [Aceturic acid]. In Johnson JR, ed. Organic Synthesis, 19, New York, Wiley, 4.
Huang, S. S., Zhu, B. B., Wang, K. H., Yu, M., Wang, Z. W., Li, Y., ... & Wang, Q. M. (2022). Design, synthesis, and insecticidal and fungicidal activities of quaternary ammonium salt derivatives of a triazolyphenyl isoxazoline insecticide.
Pest Management Science, 78(5), 2011-2021.
https://doi.org/10.1002/ps.6824
Kowalska-Krochmal, B., & Dudek-Wicher, R. (2021). The minimum inhibitory concentration of antibiotics: methods, interpretation, clinical relevance.
Pathogens, 10(2), 165.
https://doi.org/10.3390/pathogens10020165
Meier, A., Tsaloglou, N. M., Mowlem, M. C., Keevil, C. W., & Connelly, D. P. (2013). Hyperbaric biofilms on engineering surfaces formed in the deep sea.
Biofouling, 29(9), 1029-1042.
https://doi.org/10.1080/08927014.2013.824967
Mota, F. V. B., de Araújo Neta, M. S., de Souza Franco, E., Bastos, I. V. G. A., da Araújo, L. C. C., da Silva, S. C., ... & da Silva, T. G. (2019). Evaluation of anti-inflammatory activity and molecular docking study of new aza-bicyclic isoxazoline acylhydrazone derivatives.
Medchemcomm, 10(11), 1916-1925.
https://doi.org/10.1039/C9MD00276F
Otter, J. A., Patel, A., Cliff, P. R., Halligan, E. P., Tosas, O., & Edgeworth, J. D. (2013). Selection for qacA carriage in CC22, but not CC30, methicillin-resistant
Staphylococcus aureus bloodstream infection isolates during a successful institutional infection control programme.
Journal of Antimicrobial Chemotherapy, 68(5), 992-999.
https://doi.org/10.1093/jac/dks500
Parvekar, P., Palaskar, J., Metgud, S., Maria, R., & Dutta, S. (2020). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against
Staphylococcus aureus.
Biomaterial Investigations in Dentistry, 7(1), 105-109.
https://doi.org/10.1080/26415275.2020.1796674
Pasha, M. A., Jayashankara, V. P., Venugopala, K. N., & Rao, G. K. (2007). Zinc Oxide (ZnO): an efficient catalyst for the synthesis of 4-arylmethylidene-2-phenyl-5-(4H)-oxazolones having antimicrobial activity.
Journal of Pharmacology and Toxicology, 2(3), 264-270.
https://doi.org/10.3923/jpt.2007.264.270
Prosser, G. A., & de Carvalho, L. P. S. (2013). Kinetic mechanism and inhibition of
Mycobacterium Tuberculosis D-alanine: D-alanine ligase by the antibiotic D-cycloserine. The
FEBS Journal, 280(4), 1150-1166.
https://doi.org/10.1111/febs.12108
Rachid, S., Ohlsen, K., Witte, W., Hacker, J., & Ziebuhr, W. (2000). Effect of subinhibitory antibiotic concentrations on polysaccharide intercellular adhesin expression in biofilm-forming
Staphylococcus epidermidis.
Antimicrobial Agents and Chemotherapy, 44(12), 3357-3363.
https://doi.org/10.1128/aac.44.12.3357-3363.2000
Redelman, C. V., Maduakolam, C., & Anderson, G. G. (2012). Alcohol treatment enhances
Staphylococcus aureus biofilm development.
FEMS Immunology and Medical Microbiology, 66(3), 411-418.
https://doi.org/10.1111/1574-695X.12005
Sedenkova, K. N., Andriasov, K. S., Eremenko, M. G., Grishin, Y. K., Alferova, V. A., Baranova, A. A., ... & Averina, E. B. (2022). Bicyclic isoxazoline derivatives: synthesis and evaluation of biological activity.
Molecules, 27(11), 3546.
https://doi.org/10.3390/molecules27113546
Stewart, P. S., & Bjarnsholt, T. (2020). Risk factors for chronic biofilm-related infection associated with implanted medical devices.
Clinical Microbiology Infection, 26(8), 1034-1038.
https://doi.org/10.1016/j.cmi.2020.02.027
Tandel, R.C., & Mammen, D. (2008). Synthesis and study of some compounds containing oxazolone ring, showing biological activity.
Indian Journal of Chemistry, 47B (6), 932-937.
http://op.niscair.res.in/
Torlak, E., Korkut, E., Uncu, A. T., & Sener, Y. (2017). Biofilm formation by
Staphylococcus aureus isolates from a dental clinic in Konya, Turkey.
Journal of Infection and Public Health, 10(6), 809-813.
https://doi.org/10.1016/j.jiph.2017.01.004
Trefzger, O. S., Barbosa, N. V., Scapolatempo, R. L., das Neves, A. R., Ortale, M. L., Carvalho, D. B., ... & Baroni, A. C. (2020). Design, synthesis, antileishmanial, and antifungal biological evaluation of novel 3, 5‐disubstituted isoxazole compounds based on 5‐nitrofuran scaffolds.
Archiv der Pharmazie,
353(2), e1900241.
https://doi.org/10.1002/ardp.201900241
Wang, X., Hu, Q., Tang, H., & Pan, X. (2023). Isoxazole/Isoxazoline skeleton in the structural modification of natural products: a review.
Pharmaceuticals, 16(2), 228.
https://doi.org/10.3390/ph16020228