Badoei-Dalfard, A., Tahami, A., & Karami, Z. (2022). Lipase immobilization on glutaraldehyde activated graphene oxide/chitosan/cellulose acetate electrospun nanofibrous membranes and its application on the synthesis of benzyl acetate.
Colloids and Surfaces B: Biointerfaces, 209, 112151.
https://doi.org/10.1016/j.colsurfb.2021.112151.
Bennis, S., Chapey, C., Robert, J., & Couvreur, P. (1994). Enhanced cytotoxicity of doxorubicin encapsulated in polyisohexylcyanoacrylate nanospheres against multidrug-resistant tumour cells in culture.
European Journal of Cancer,
30(1), 89-93.
https://doi.org/10.1016/S0959-8049(05)80025-5.
Chidambaram, M., & Krishnasamy, K. (2014). Nanoparticulate drug delivery system to overcome the limitations of conventional curcumin in the treatment of various cancers: a review.
Drug Delivery Letters,
4(2), 116-127. https://doi.org/
10.2174/2210303103999 131211110708.
Desai, M. P., Labhasetwar, V., Amidon, G. L., & Levy, R. J. (1996). Gastrointestinal uptake of biodegradable microparticles: effect of particle size.
Pharmaceutical Research,
13, 1838-1845.
https://doi.org/10.1023/A:10160851 08889.
Ghawanmeh, A. A., Ali, G. A., Algarni, H., Sarkar, S. M., & Chong, K. F. (2019). Graphene oxide-based hydrogels as a nanocarrier for anticancer drug delivery.
Nano Research,
12, 973-990.
https://doi.org/10.1007/s12274-019-2300-4.
Goswami, M., Mangoli, S. H., & Jawali, N. (2006). Involvement of reactive oxygen species in the action of ciprofloxacin against
Escherichia coli.
Antimicrobial Agents and Chemotherapy,
50(3), 949-954. https://doi.org/
10.1128/AAC.50.3.949-954.2006.
Helson, L. (2013). Curcumin (diferuloylmethane) delivery methods: a review.
Biofactors,
39(1), 21-26. https://doi.org/
10.1002/biof.1080.
Hussain, Z., Thu, H. E., Amjad, M. W., Hussain, F., Ahmed, T. A., & Khan, S. (2017). Exploring recent developments to improve antioxidant, anti-inflammatory and antimicrobial efficacy of curcumin: a review of new trends and future perspectives.
Materials Science and Engineering:
77, 1316-1326.
https://doi.org/10.1016/j.msec.2017.03.226.
Itzia Azucena, R. C., José Roberto, C. L., Martin, Z. R., Rafael, C. Z., Leonardo, H. H., Gabriela, T. P., & Araceli, C. R. (2019). Drug susceptibility testing and synergistic antibacterial activity of curcumin with antibiotics against enterotoxigenic
Escherichia coli.
Antibiotics,
8(2), 43.
https://doi.org/10.3390/antibiotics8020043.
Jalaladdiny, S.S., Badoei-dalfard, A., Karami, Z., & Sargazi, G. (2022) Co-delivery of doxorubicin and curcumin to breast cancer cells by a targeted delivery system based on Ni/Ta core-shell metal-organic framework coated with folic acid-activated chitosan nanoparticles.
Journal of the Iranian Chemical Society, 19(10), 4287-4298.
https://doi.org/10.1007/s13738-022-02604-w.
Jamil, Q. U. A., Jaerapong, N., Zehl, M., Jarukamjorn, K., & Jäger, W. (2017). Metabolism of curcumin in human breast cancer cells: impact of sulfation on cytotoxicity.
Planta Medica,
83, 1028-1034. https://doi.org/
10.1055/s-0043-107885.
Kiew, S. F., Kiew, L. V., Lee, H. B., Imae, T., & Chung, L. Y. (2016). Assessing biocompatibility of graphene oxide-based nanocarriers: a review.
Journal of Controlled Release,
226, 217-228.
https://doi.org/10.1016/j.jconrel.2016.02.015.
Li, L., Zhang, X., Pi, C., Yang, H., Zheng, X., Zhao, L., & Wei, Y. (2020). Review of curcumin physicochemical targeting delivery system.
International Journal of Nanomedicine,
15, 9799-9821.
https://doi.org/10.2147/IJN.S276201.
Lim, G. P., Chu, T., Yang, F., Beech, W., Frautschy, S. A., & Cole, G. M. (2001). The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse.
Journal of Neuroscience,
21(21), 8370-8377. https://doi.org/
10.1523/JNEUROSCI.21-21-08370.2001.
Ma, Z., Haddadi, A., Molavi, O., Lavasanifar, A., Lai, R., & Samuel, J. (2008). Micelles of poly (ethylene oxide)-b-poly (ε-caprolactone) as vehicles for the solubilization, stabilization, and controlled delivery of curcumin.
Journal of Biomedical Materials Research, 86(2), 300-310.
https://doi.org/10.1002/jbm.a.31584.
Mehrabi, M., Karami, F., Siah, M., Esmaeili, S., & Khodarahmi, R. (2022). Is curcumin an active suicidal antioxidant only in the aqueous environments?
Journal of the Iranian Chemical Society,
19(8), 3441-3450.
https://doi.org/10.1007/s13738-022-02538-3.
Mehrabi, M., Esmaeili, S., Ezati, M., Abassi, M., Rasouli, H., Nazari, D., ... & Khodarahmi, R. (2021). Antioxidant and glycohydrolase inhibitory behavior of curcumin-based compounds: synthesis and evaluation of anti-diabetic properties in vitro.
Bioorganic Chemistry,
110, 104720.
https://doi.org/10.1016/j.bioorg.2021.104720.
Moghaddam, K. M., Iranshahi, M., Yazdi, M. C., & Shahverdi, A. R. (2009). The combination effect of curcumin with different antibiotics against
Staphylococcus aureus.
International Journal of Green Pharmacy,
3(2), 141-143.
https://doi.org/10.4103/0973-8258.54906.
Mu, L., & Feng, S. S. (2003). A novel controlled release formulation for the anticancer drug paclitaxel (Taxol®): PLGA nanoparticles containing vitamin E TPGS.
Journal of Controlled Release,
86(1), 33-48.
https://doi.org/9780429162640.
Mun, S. H., Joung, D. K., Kim, Y. S., Kang, O. H., Kim, S. B., Seo, Y. S., ... & Kwon, D. Y. (2013). Synergistic antibacterial effect of curcumin against methicillin-resistant
Staphylococcus aureus.
Phytomedicine,
20(8-9), 714-718.
https://doi.org/10.1016/j.phymed.2013.02.006 Nurunnabi, M., Parvez, K., Nafiujjaman, M., Revuri, V., Khan, H. A., Feng, X., & Lee, Y. K. (2015). Bioapplication of graphene oxide derivatives: drug/gene delivery, imaging, polymeric modification, toxicology, therapeutics and challenges.
RSC Advances,
5(52), 42141-42161. https://doi.org/10.1039/c5ra04756k.
Pan, Y., Sahoo, N. G., & Li, L. (2012). The application of graphene oxide in drug delivery.
Expert Opinion on Drug Delivery,
9(11), 1365-1376. https://doi.org/
10.1517/17425247.2012.729575.
Panyam, J., Williams, D., Dash, A., Leslie‐Pelecky, D., & Labhasetwar, V. (2004). Solid‐state solubility influences encapsulation and release of hydrophobic drugs from PLGA/PLA nanoparticles.
Journal of Pharmaceutical Sciences,
93(7), 1804-1814.
https://doi.org/10.1002/jps.20094.
Raja, M. A., Arif, M., Feng, C., Zeenat, S., & Liu, C. G. (2017). Synthesis and evaluation of pH-sensitive, self-assembled chitosan-based nanoparticles as efficient doxorubicin carriers.
Journal of Biomaterials Applications,
31(8), 1182-1195.
https://doi.org/10.1177/0885328216681184.
Ramazani, A., Abrvash, M., Sadighian, S., Rostamizadeh, K., & Fathi, M. (2018). Preparation and characterization of curcumin loaded gold/graphene oxide nanocomposite for potential breast cancer therapy.
Research on Chemical Intermediates,
44, 7891-7904.
https://doi.org/10.1007/s11164-018-3593-8.
Richardson, J. J., Cui, J., Bjornmalm, M., Braunger, J. A., Ejima, H., & Caruso, F. (2016). Innovation in layer-by-layer assembly.
Chemical Reviews,
116(23), 14828-14867.
https://doi.org/10.1021/acs.chemrev.6b00627.
Roudashti, S., Zeighami, H., Mirshahabi, H., Bahari, S., Soltani, A., & Haghi, F. (2017). Synergistic activity of sub-inhibitory concentrations of curcumin with ceftazidime and ciprofloxacin against
Pseudomonas aeruginosa quorum sensing related genes and virulence traits.
World Journal of Microbiology and Biotechnology,
33, 1-8.
https://doi.org/10.1007/s11274-016-2195-0.
Sun, X., Liu, Z., Welsher, K., Robinson, J. T., Goodwin, A., Zaric, S., & Dai, H. (2008). Nano-graphene oxide for cellular imaging and drug delivery.
Nano Research,
1, 203-212. https://doi.org/
10.1007/s12274-008-8021-8.
Teow, S. Y., & Ali, S. A. (2015). Synergistic antibacterial activity of Curcumin with antibiotics against
Staphylococcus aureus.
Pakistan Journal of Pharmaceutical Sciences,
28(6), 2109-2114.
https://doi.org/10.21203/rs.3.rs-1551439/v1.
Wang, F., Yuan, J., Zhang, Q., Yang, S., Jiang, S., & Huang, C. (2018). PTX-loaded three-layer PLGA/CS/ALG nanoparticle based on layer-by-layer method for cancer therapy.
Journal of Biomaterials Science,
29(13), 1566-1578.
https://doi.org/10.1080/09205063. 2018.1475941.
Wong, J. K., Mohseni, R., Hamidieh, A. A., MacLaren, R. E., Habib, N., & Seifalian, A. M. (2017). Limitations in clinical translation of nanoparticle-based gene therapy.
Trends in Biotechnology,
35(12), 1124-1125. https://doi.org/
10.1016/j.tibtech.2017.07.009.
Yadav, A., Lomash, V., Samim, M., & Flora, S. J. (2012). Curcumin encapsulated in chitosan nanoparticles: a novel strategy for the treatment of arsenic toxicity.
Chemico-Biological Interactions,
199(1), 49-61.
https://doi.org/10.1016/j.cbi.2012.05.011.
Yun, D. G., & Lee, D. G. (2016). Antibacterial activity of curcumin via apoptosis-like response in
Escherichia coli.
Applied Microbiology and Biotechnology,
100, 5505-5514.
https://doi.org/10.1007/s00253-016-7415-x.
Zaaba, N. I., Foo, K. L., Hashim, U., Tan, S. J., Liu, W. W., & Voon, C. H. (2017). Synthesis of graphene oxide using modified hummers method: solvent influence.
Procedia Engineering,
184, 469-477.
https://doi.org/10.1016/j.proeng.2017.04.118.
Zhang, X., Yin, J., Peng, C., Hu, W., Zhu, Z., Li, W., ... & Huang, Q. (2011). Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration.
Carbon,
49(3), 986-995.
https://doi.org/10.1016/j.carbon.2010.11.005.
Zheng, D., Huang, C., Huang, H., Zhao, Y., Khan, M. R. U., Zhao, H., & Huang, L. (2020). Antibacterial mechanism of curcumin: a review.
Chemistry & Biodiversity,
17(8), e2000171.
https://doi.org/10.1002/cbdv.202000171.
Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., & Ruoff, R. S. (2010). Graphene and graphene oxide: synthesis, properties, and applications.
Advanced Materials,
22(35), 3906-3924.
https://doi.org/10.1002/adma. 201001068.
Zokaei, E., Badoei-Dalfrad, A., Ansari, M., Karami, Z., Eslaminejad, T., & Nematollahi-Mahani, S. N. (2019). Therapeutic potential of DNAzyme loaded on chitosan/cyclodextrin nanoparticle to recovery of chemosensitivity in the MCF-7 cell line.
Applied Biochemistry and Biotechnology, 1
87, 708-723.
https://doi.org/10.1007/s12010-018-2836-x.