Aeini, M., Khodakaramian, G., & Mirzaei Najafgholi, H. (2018). Sugar beet leaf culturable endophytic bacterial composition from the major sugar beet growing areas in the west of Iran.
Journal of Genetic Resources,
4(2), 105-113.
https://dx.doi.org/10.22080/jgr.2019.15537.1118
Alexander, D. B., & Zuberer, D. A. (1991). Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria.
Biology and Fertility of Soils, 12, 39-45.
https://doi.org/10.1007/BF00369386
Alori, E. T., Glick, B. R., & Babalola, O. O. (2017). Microbial phosphorus solubilization and its potential for use in sustainable agriculture.
Frontiers in Microbiology,
8, 971.
https://doi.org/10.3389/fmicb.2017.00971
Alsharif, W., Saad, M. M., & Hirt, H. (2020). Desert microbes for boosting sustainable agriculture in extreme environments.
Frontiers in Microbiology,
11, 496411.
https://doi.org/10.3389/fmicb.2020.01666.
Ansari, F. A., & Ahmad, I. (2018). Biofilm development, plant growth promoting traits and rhizosphere colonization by
Pseudomonas entomophila FAP1: a promising PGPR.
Advances in Microbiology,
8(03), 235-251.
https://doi.org/10.4236/aim.2018.83016
Aydi-Ben Abdallah, R., Mejdoub-Trabelsi, B., Jabnoun-Khiareddine, H., & Daami-Remadi, M. (2017). Use of endophytic bacteria naturally associated with
Cestrum nocturnum for Fusarium wilt biocontrol and enhancement of tomato growth.
Tunisian Journal of Plant Protection,
12, 15-40.
https://doi.org/10.4172/1948-5948.1000259
Bhattacharyya, P. N., & Jha, D. K. (2012). Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture.
World Journal of Microbiology and Biotechnology,
28, 1327-1350.
https://doi.org/10.1007/s11274-011-0979-9
Bric, J. M., Bostock, R. M., & Silverstone, S. E. (1991). Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane.
Applied and Environmental Microbiology, 57(2), 535-538.
https://doi.org/10.1128/aem.57.2.535-538.1991
Eisendle, M., Oberegger, H., Buttinger, R., Illmer, P., & Haas, H. (2004). Biosynthesis and uptake of siderophores is controlled by the PacC-mediated ambient-pH regulatory system in
Aspergillus nidulans.
Eukaryotic Cell,
3(2), 561-563.
https://doi.org/10.1128/EC.3.2.561-563.2004
Glickmann, E., & Dessaux, Y. (1995). A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria.
Applied and Environmental Microbiology,
61(2), 793-796.
https://doi.org/10.1128/aem.61.2.793-796.1995
González-Lamothe, R., El Oirdi, M., Brisson, N., & Bouarab, K. (2012). The conjugated auxin indole-3-acetic acid-aspartic acid promotes plant disease development.
Plant Cell,
24(2), 762-777.
https://doi.org/10.1105/tpc.111.095190
Goswami, D., Thakker, J. N., & Dhandhukia, P. C. (2016). Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review.
Cogent Food and Agriculture,
2(1), 1127500.
https://doi.org/10.1080/23311932.2015.1127500
Idris, R., Trifonova, R., Puschenreiter, M., Wenzel, W. W., & Sessitsch, A. (2004). Bacterial communities associated with flowering plants of the Ni hyperaccumulator
Thlaspi goesingense.
Applied and Environmental Microbiology,
70(5), 2667-2677.
https://doi.org/10.1128/aem.70.5.2667-2677.2004
Kasim, W. A., Gaafar, R. M., Abou-Ali, R. M., Omar, M. N., & Hewait, H. M. (2016). Effect of biofilm forming plant growth promoting rhizobacteria on salinity tolerance in barley.
Annals of Agricultural Sciences,
61(2), 217-227.
https://doi.org/10.1016/j.aoas.2016.07.003
Khan, M. A., Asaf, S., Khan, A. L., Ullah, I., Ali, S., Kang, S. M., & Lee, I. J. (2019). Alleviation of salt stress response in soybean plants with the endophytic bacterial isolate
Curtobacterium sp. SAK1.
Annals of Microbiology,
69(8), 797-808.
https://doi.org/10.1007/s13213-019-01470-x
Kloepper, J. W., Leong, J., Teintze, M., & Schroth, M. N. (1980). Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria.
Nature,
286(5776), 885-886.
https://doi:10.1038/286885a0
Moreira, R. R., Nesi, C. N., & De Mio, L. L. M. (2014).
Bacillus spp. and
Pseudomonas putida as inhibitors of the
Colletotrichum acutatum group and potential to control Glomerella leaf spot.
Biological Control,
72, 30-37.
http://dx.doi.org/10.1016%2Fj.biocontrol. 2014.02.001
Narimani, S., Bazgir, E., Mirzaei Najafgholi, H. (2017). Evaluation of effective factors on survival and activity of petroleum degradation bacteria in bioremediation process.
Cellular and Molecular Researches, 30, 91-99.
https://dorl.net/dor/20.1001.1.23832738.1396.30.1.8.7
Patel, M., Patel, K., Al-Keridis, L. A., Alshammari, N., Badraoui, R., Elasbali, A. M., ... & Adnan, M. (2022). Cadmium-tolerant plant growth-promoting bacteria
Curtobacterium oceanosedimentum improves growth attributes and strengthens antioxidant system in chili (
Capsicum frutescens).
Sustainability,
14(7), 4335.
https://doi.org/10.3390/su14074335
Presta, L., Fondi, M., Perrin, E., Maida, I., Miceli, E., Chiellini, C., ... & Fani, R. (2016).
Arthrobacter sp. EpRS66 and
Arthrobacter sp. EpRS71: draft genome sequences from two bacteria isolated from
Echinacea purpurea Rhizospheric Soil.
Frontiers in Microbiology,
7, 1417.
https://doi.org/10.3389/fmicb.2016.01417
Rosenblueth, M., & Martínez-Romero, E. (2006). Bacterial endophytes and their interactions with hosts.
Molecular Plant-Microbe Interactions,
19(8), 827-837.
https://doi.org/10.1094/MPMI-19-0827
Siah, A., Deweer, C., Morand, E., Reignault, P., & Halama, P. (2010). Azoxystrobin resistance of French
Mycosphaerella graminicola strains assessed by four in vitro bioassays and by screening of G143A substitution.
Crop Protection,
29(7), 737-743.
https://doi.org/10.1016/j.cropro.2010.02.012
Sperber, J. I. (1958). The incidence of apatite-solubilizing organisms in the rhizosphere and soil.
Australian Journal of Agricultural Research,
9(6), 778-781.
https://doi.org/10.1071/AR9580778
Vanissa, T. T. G., Berger, B., Patz, S., Becker, M., Turečková, V., Novák, O., ... & Ruppel, S. (2020). The response of maize to inoculation with
Arthrobacter sp. and
Bacillus sp. in phosphorus-deficient, salinity-affected soil.
Microorganisms,
8(7), 1005.
https://doi.org/10.3390/microorganisms8071005
Yasmin, S., Hafeez, F. Y., Mirza, M. S., Rasul, M., Arshad, H. M., Zubair, M., & Iqbal, M. (2017). Biocontrol of bacterial leaf blight of rice and profiling of secondary metabolites produced by rhizospheric
Pseudomonas aeruginosa BRp3.
Frontiers in Microbiology,
8, 1895.
https://doi.org/10.3389/fmicb.2017.01895