Molecular Analysis of the Mangrove Oysters (Mollusca: Bivalvia) in Lagos Lagoon, Nigeria Based on Mitochondrial Genome

Document Type : Research Article

Authors

1 Department of Fisheries and Aquaculture, Faculty of Agriculture, Bayero University Kano, Nigeria

2 Department of Marine Sciences, Faculty of Science, University of Lagos, Akoka, Lagos, Nigeria

3 Center for Biotechnology Research, Bayero University Kano, Nigeria

Abstract

The commercial and economic importance of the mangrove oysters in the Lagos Lagoon provokes a great deal of biotic investigation, which provides a convincing justification for sequencing an oyster genome. Differentiating oysters based on their morphological characteristics for species identification and taxonomy is highly challenging because of the high intensity of phenotypic changes they exhibit. The genomic resources available for the mangrove oysters are incomparable to resources for any other bivalve invertebrates.  In this study, unidentified mangrove oysters were collected from three different mangrove swamps off the Lagos Lagoon, Nigeria. Molecular procedures were used to identify the oysters genetically while pairwise and multiple alignments of mitochondrial DNA gene sequences of representative oyster strains within the clusters were used to relate them phenotypically to other oysters from various locations. Genetic diversity present in the selected mangrove oyster samples based on cytochrome oxidase I (COI) gene sequences reveals that the unidentified species at the three locations are Crassostrea gasar (Adanson, 1757) and were shown to be more like Brazilian oysters (Crassostrea brasiliana) with 99.55% similarity but clustered in a different clade of mangrove oysters in the GenBank. Similarities in the genetic makeup can principally be accredited to high levels of constant gene flow that are aftermaths of dispersal facilitated by a relatively long pelagic larval stage while the morphological differences can be primarily attributed to ontogeny with environmental conditions. A phylogenetic tree was constructed. The significance of these existing resources for a broad range of evolutionary and environmental sciences will be critically leveraged by having a recent or current genome sequence. The information obtained from this report is crucial to the understanding of diversity, systematics, and population genetics of mangrove oyster species of the Lagos Lagoon.

Keywords

Main Subjects


Abgrall, M. J., Bastien-Daigle, S., Miron, G., & Ouellette, M. (2010). Potential interactions between populations of Softshell Clams (Mya arenaria) and Eastern Oysters (Crassostrea virginica) in temperate estuaries, a literature review. Canadian Technical Report of Fisheries and Aquatic Sciences, No. 2892. https://publications.gc.ca/
Adite, A., Abou, Y., Sossoukpe, E., & Fiogbe, E. D. (2013). The oyster farming in the coastal ecosystem of southern Benin (West Africa): Environment, growth and contribution to sustainable coastal fisheries management. International Journal of Development Research, 3(10), 087-094. https://www.journalijdr.com/
Akinjogunla, V. F,  Lawal-Are, A. O., & Soyinka, O. O. (2017). Proximate composition and mineral contents of Mangrove Oyster (Crassostrea gasar) from Lagos Lagoon, Lagos, Nigeria. Nigerian Journal of Fisheries, 5(2), 36-49. https://www.nijfaq.com.ng/
Akinjogunla, V. F., & Lawal-Are, A. O. (2020). Seasonal assessment of the impacts of heavy metal deposits in Crassostrea gasar  (Adanson, 1757) from the mangrove swamp of the Lagos Lagoon, Lagos, Nigeria. Journal of Experimental Research, 8(2), 21-31. http://www.er-journal.com/
Akinjogunla, V. F., & Shu’aibu, U. (2022). Ichthyofauna composition and operative artisanal fishing activities in Ajiwa Irrigation Dam, Katsina State, Northern Nigeria. Journal of Innovative Research in Life Sciences, 4(1), 45-53. https://jirlsonline.com/
Akinjogunla,V. F., & Soyinka, O. O. (2022). Morphometric assessment and condition factor of the mangrove oyster from a tropical mangrove swamp, off Lagos Lagoon, South-West, Nigeria. Omni-Akuatika, 18(1), 62-71. http://dx.doi.org/10.20884/1.oa.2022.18.1.957
Akinjogunla, V. F., Mudi, Z. R., Akinnigbagbe, O. R., & Akinnigbagbe, A. E. (2021). Biochemical profile of the mangrove oyster, Crassostrea gasar (Adanson, 1757) from the Mangrove Swamps, South-West, Nigeria. Tropical Journal of Natural Product Research, 5(12), 2137-2143.https://www.tjnpr.org/
Amarakoon,  A. G. U. (2016). Molecular identification of oyster (Crassostrea sp.) in Sri Lanka from mitochondrial DNA sequence data. World Scientific News, 57, 116-121. http://www.worldscientificnews.com/
Blasco, F., Gauquelin, T., Rasolofoharinoro, M., Denis, J., Aizpuru, M., & Caldairou, V. (1998). Recent advances in mangrove studies using remote sensing data. Marine and Freshwater Research, 49(4), 287-296. https://doi.org/10.1071/MF97153
Boudry, P., Heurtebise, S., Collet, B., Cornette, F., & Gérard, A. (1998). Differentiation between populations of the Portuguese oyster, Crassostrea angulata (Lamark) and the Pacific oyster, Crassostrea gigas (Thunberg), revealed by mtDNA RFLP analysis. Journal of Experimental Marine Biology and Ecology, 226(2), 279-291. https://doi.org/10.1016/S0022-0981(97)00250-5
Broquard, C., Martinez, A. S., Maurouard, E., Lamy, J. B., & Degremont, L. (2020). Sex determination in the oyster Crassostrea gigas-A large longitudinal study of population sex ratios and individual sex changes. Aquaculture, 515, 734555. https://doi.org/10.1016/j.aquaculture.2019.734555
Day, A. J., Hawkins, A. J. S., & Visootiviseth, P. (2000). The use of allozymes and shell morphology to distinguish among sympatric species of the rock oyster Saccostrea in Thailand. Aquaculture, 187(1-2), 51-72. https://doi.org/10.1016/S0044-8486(00)00301-X
Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3(5), 294-9. https://pubmed.ncbi.nlm.nih.gov/7881515/
Hedgecock, D., Li, G., Banks, M. A., & Kain, Z. (1999). Occurrence of the Kumamoto oyster Crassostrea sikamea in the Ariake Sea, Japan. Marine Biology, 133, 65-68. https://doi.org/10.1007/s002270050443
Hollander, J., & Butlin, R. K. (2010). The adaptive value of phenotypic plasticity in two ecotypes of a marine gastropod. BMC Evolutionary Biology, 10, 1-7. https://doi.org/10.1186/1471-2148-10-333
Hsiao, S. T., Chuang, S. C., Chen, K. S., Ho, P. H., Wu, C. L., & Chen, C. A. (2016). DNA barcoding reveals that the common cupped oyster in Taiwan is the Portuguese oyster Crassostrea angulata (Ostreoida; Ostreidae), not C. gigas. Scientific Reports, 6(1), 34057. https://doi.org/10.1038/srep34057
Ignacio, B. L., Absher, T. M., Lazoski, C., & Solé-Cava, A. M. (2000). Genetic evidence of the presence of two species of Crassostrea (Bivalvia: Ostreidae) on the coast of Brazil. Marine Biology, 136, 987-991. https://doi.org/10.1007/s002270000252
Johannesson, K., Johannesson, B., & Rolán‐Alvarez, E. (1993). Morphological differentiation and genetic cohesiveness over a microenvironmental gradient in the marine snail Littorina saxatilis. Evolution, 47(6), 1770-1787. https://doi.org/10.1111/j.1558-5646.1993.tb01268.x
Lam, K., & Morton, B. (2003). Mitochondrial DNA and morphological identification of a new species of Crassostrea (Bivalvia: Ostreidae) cultured for centuries in the Pearl River Delta, Hong Kong, China. Aquaculture, 228(1-4), 1-13. https://doi.org/10.1016/S0044-8486(03)00215-1
Lapègue, S., Boutet, I., Leitão, A., Heurtebise, S., Garcia, P., Thiriot-Quiévreux, C., & Boudry, P. (2002). Trans-Atlantic distribution of a mangrove oyster species revealed by 16S mtDNA and karyological analyses. The Biological Bulletin, 202(3), 232-242. https://doi.org/10.2307/1543473
Lawal-Are, A. O., & Akinjogunla, V. F. (2012). Penaeus notialis (pink shrimps): length-weight relationships and condition factor in Lagos Lagoon, South West, Nigeria. https://doi.org/10.5923/j.scit.20120203.02
Leguerrier, D., Niquil, N., Petiau, A., & Bodoy, A. (2004). Modeling the impact of oyster culture on a mudflat food web in Marennes-Oléron Bay (France). Marine Ecology Progress Series, 273, 147-162. https://doi.org/10.3354/meps273147
Mahu, E., Sanko, S., Kamara, A., Chuku, E. O., Effah, E., Sohou, Z., ... & Marchant, R. (2022). Climate resilience and adaptation in West African oyster fisheries: An expert-based assessment of the vulnerability of the oyster crassostrea tulipa to climate change. Fishes, 7(4), 205. https://doi.org/10.3390/fishes7040205 
Manríquez, P. H., Lagos, N. A., Jara, M. E., & Castilla, J. C. (2009). Adaptive shell color plasticity during the early ontogeny of an intertidal keystone snail. Proceedings of the National Academy of Sciences, 106(38), 16298-16303. https://doi.org/10.1073/pnas.0908655106
Márquez, E. D. N. A., Landínez-García, R. M., Ospina-Guerrero, S. P., Aicardo Segura, J., Prada, M., Castro, E. R. I. C. K., ... & Borda, C. A. R. L. O. S. (2013). Genetic analysis of queen conch Strombus gigas from the Southwest Caribbean. Proceedings of the 65th Gulf and Caribbean Fisheries Institute, November 5-9, 2012 Santa Marta, Colombia. http://hdl.handle.net/1834/36343
Márquez, E. J., Restrepo-Escobar, N., & Montoya-Herrera, F. L. (2016). Shell shape variation of queen conch Strombus gigas (Mesograstropoda: Strombidae) from Southwest Caribbean. Revista de Biología Tropical, 64(4), 1585-1595. https://doi.org/10.15517/rbt.v64i4.21468
Phung, C. C., Choo, M. H., & Liew, T. S. (2022). Sexual dimorphism in shell size of the land snail Leptopoma perlucidum (Caenogastropoda: Cyclophoridae). PeerJ, 10, e13501. https://doi.org/10.7717/peerj.13501
Sánchez, R., Sepúlveda, R. D., Brante, A., & Cárdenas, L. (2011). Spatial pattern of genetic and morphological diversity in the direct developer Acanthina monodon (Gastropoda: Mollusca). Marine Ecology Progress Series, 434, 121-131. https://doi.org/10.3354/meps09184
Sawangproh, W., Phaenark, C., Chunchob, S., & Paejaroen, P. (2021). Sexual dimorphism and morphometric analysis of Filopaludina martensi martensi (Gastropoda: Viviparidae). Ruthenica, Russian Malacological Journal, 31(2), 87-92. https://doi.org/10.35885/ruthenica.2021.31(2).4
Liu, S., Xue, Q., Xu, H., & Lin, Z. (2021). Identification of main oyster species and comparison of their genetic diversity in Zhejiang coast, South of Yangtze river estuary. Frontiers in Marine Science, 8, 662515. https://doi.org/10.3389/fmars.2021.662515
Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725-2729. https://doi.org/10.1093/molbev/mst197
Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673-4680. https://doi.org/10.1093/nar/22.22.4673
Wu, X., Xu, X., Yu, Z., Wei, Z., & Xia, J. (2010). Comparison of seven Crassostrea mitogenomes and phylogenetic analyses. Molecular Phylogenetics and Evolution, 57(1), 448-454. https://doi.org/10.1016/j.ympev.2010.05.029
Xu, F., Zhang, G., Liu, X., Zhang, S., Shi, B., & Guo, X. (2009). Laboratory hybridization between Crassostrea ariakensis and C. sikamea. Journal of Shellfish Research, 28(3), 453-458. https://doi.org/10.2983/035.028.0305
Yamamoto, H. (1992). Detection and identification of Legionella species by PCR. Nihon Rinsho, 50, 394-399. https://pubmed.ncbi.nlm.nih.gov/1404930/.
Yu, D. H., & Chu, K. H. (2006). Species identity and phylogenetic relationship of the pearl oysters in Pinctada Röding, 1798 based on ITS sequence analysis. Biochemical Systematics and Ecology, 34(3), 240-250. https://doi.org/10.1016/j.bse.2005.09.004
Yu, Z., Wei, Z., Kong, X., & Shi, W. (2008). Complete mitochondrial DNA sequence of oyster Crassostrea hongkongensis-a case of" Tandem duplication-random loss" for genome rearrangement in Crassostrea?. BMC Genomics, 9, 1-13. https://doi.org/10.1186/1471-2164-9-477