Abed, F., Bachir-Bouiadjra, B., Dahloum, L., Yakubu, A., Haddad, A., & Homrani, A. (2021). Procruste analysis of forewing shape in two endemic honeybee subspecies
Apis mellifera intermissa and
A. m. sahariensis from the Northwest of Algeria.
Biodiversitas Journal of Biological Diversity,
22(1), 154-164.
https://doi.org/10.13057/BIODIV/D220121
Aglagane, A., Tofilski, A., Er-Rguibi, O., Laghzaoui, E. M., Kimdil, L., El Mouden, E. H., ... & Aourir, M. (2022). Geographical variation of honey bee (
Apis mellifera L. 1758) populations in South-Eastern Morocco: a geometric morphometric analysis.
Insects,
13(3), 288.
https://doi.org/10.3390/insects13030288
Arias, M. C., & Sheppard, W. S. (2005). Phylogenetic relationships of honey bees (Hymenoptera: Apinae: Apini) inferred from nuclear and mitochondrial DNA sequence data.
Molecular Phylogenetics and Evolution,
37(1), 25-35.
https://doi.org/10.1016/J.YMPEV.2005.02.017
Boulhasani, S., Rajabi Maham, H., & Naderi, M. (2018). Wing geometric-morphometric analysis to determine the population diversity of Iranian honey bee (
Apis mellifera meda) in Northwest of Iran.
Journal of Animal Research,
31(3), 245-254.
https://animal.ijbio.ir/article_1398.html
Büchler, R., Costa, C., Hatjina, F., Andonov, S., Meixner, M. D., Conte, Y. L., ... & Wilde, J. (2014). The influence of genetic origin and its interaction with environmental effects on the survival of
Apis mellifera L. colonies in Europe.
Journal of Apicultural Research,
53(2), 205-214.
https://doi.org/10.3896/IBRA.1.53.2.03
Bustamante, T., Baiser, B., & Ellis, J. D. (2020). Comparing classical and geometric morphometric methods to discriminate between the South African honey bee subspecies
Apis mellifera scutellata and
Apis mellifera capensis (Hymenoptera: Apidae).
Apidologie,
51, 123-136.
https://doi.org/10.1007/s13592-019-00651-6
Bustamante, T., Fuchs, S., Grünewald, B., & Ellis, J. D. (2021). A geometric morphometric method and web application for identifying honey bee species (Apis spp.) using only forewings.
Apidologie,
52(3), 697-706.
https://doi.org/10.1007/s13592-021-00857-7
Cardinal, S., & Danforth, B. N. (2013). Bees diversified in the age of eudicots.
Proceedings of the Royal Society B: Biological Sciences,
280(1755), 20122686.
https://doi.org/10.1098/RSPB.2012.2686
Charistos, L., Hatjina, F., Bouga, M., Mladenovic, M., & Maistros, A. D. (2014). Morphological discrimination of Greek honey bee populations based on geometric morphometrics analysis of wing shape.
Journal of Apicultural Science,
58(1), 75-84.
https://doi.org/10.2478/jas-2014-0007
Dadgostar, S., Delkash Roudsari, S., Nozari, J., Tahmasbi, G., & Hosseini Naveh, V. (2020a). Comparison between natives honey bee (
Apis mellifera meda) and carniolan hybrid races (
Apis mellifera carnica) in Hamedan province.
Iranian Journal of Plant Protection Science,
50(2), 187-195.
https://doi.org/10.22059/ijpps.2019.249277.1006822
De la Rúa, P., Jaffé, R., Dall'Olio, R., Muñoz, I., & Serrano, J. (2009). Biodiversity, conservation and current threats to European honeybees.
Apidologie,
40(3), 263-284.
https://doi.org/10.1051/APIDO/2009027
Dillon, M. E., & Lozier, J. D. (2019). Adaptation to the abiotic environment in insects: the influence of variability on ecophysiology and evolutionary genomics.
Current Opinion in Insect Science,
36, 131-139.
https://doi.org/10.1016/j.cois.2019.09.003
Dutech, C., Sork, V. L., Irwin, A. J., Smouse, P. E., & Davis, F. W. (2005). Gene flow and fine‐scale genetic structure in a wind‐pollinated tree species, Quercus lobata (Fagaceaee).
American Journal of Botany,
92(2), 252-261.
https://doi.org/10.3732/ajb.92.2.252
Engel, M. S. (1999). The taxonomy of recent and fossil honey bees (Hymenoptera: Apidae; Apis).
Journal of Hymenoptera Research,
8(2),165-196.
http://hdl.handle.net/1808/16476
Forsman, A. (2014). Effects of genotypic and phenotypic variation on establishment are important for conservation, invasion, and infection biology.
Proceedings of the National Academy of Sciences,
111(1), 302-307.
https://doi.org/10.1073/pnas.1317745111
Fortune Business Insights. (2022). Honey Market Size, Share | Global Industry Trends [2022-2029]-Retrieved March 10, 2023 (pp. 1-213).
García, C. A. Y., Rodrigues, P. J., Tofilski, A., Elen, D., McCormak, G. P., Oleksa, A., ... & Pinto, M. A. (2022). Using the software DeepWings
© to classify honey bees across Europe through wing geometric morphometrics.
Insects,
13(12), 1132.
https://doi.org/10.3390/INSECTS13121132
Han, F., Wallberg, A., & Webster, M. T. (2012). From where did the Western honeybee (
Apis mellifera) originate?
Ecology and Evolution,
2(8), 1949-1957.
https://doi.org/10.1002/ECE3.312
Henriques, D., Chávez-Galarza, J., SG Teixeira, J., Ferreira, H., J. Neves, C., Francoy, T. M., & Pinto, M. A. (2020). Wing geometric morphometrics of workers and drones and single nucleotide polymorphisms provide similar genetic structure in the Iberian honey bee (
Apis mellifera iberiensis).
Insects,
11(2), 89.
https://doi.org/10.3390/insects11020089
Hung, K. L. J., Kingston, J. M., Albrecht, M., Holway, D. A., & Kohn, J. R. (2018). The worldwide importance of honey bees as pollinators in natural habitats.
Proceedings of the Royal Society B: Biological Sciences,
285(1870), 20172140.
https://doi.org/10.1098/RSPB.2017.2140
Ilyasov, R. A., Lee, M. L., Takahashi, J. I., Kwon, H. W., & Nikolenko, A. G. (2020). A revision of subspecies structure of western honey bee
Apis mellifera.
Saudi Journal of Biological Sciences,
27(12), 3615-3621.
https://doi.org/10.1016/J.SJBS.2020.08.001
Khalifa, S. A., Elshafiey, E. H., Shetaia, A. A., El-Wahed, A. A. A., Algethami, A. F., Musharraf, S. G., ... & El-Seedi, H. R. (2021). Overview of bee pollination and its economic value for crop production.
Insects,
12(8), 688.
https://doi.org/10.3390/INSECTS12080688
Kükrer, M., Kence, M., & Kence, A. (2021). Honey bee diversity is swayed by migratory beekeeping and trade despite conservation practices: genetic evidence for the impact of anthropogenic factors on population structure.
Frontiers in Ecology and Evolution,
9, 556816.
https://doi.org/10.3389/FEVO.2021.556816/BIBTEX
Masaquiza, D., Ferrán, M. O., Guamán, S., Naranjo, E., Vaca, M., Curbelo, L. M., & Arenal, A. (2023). Geometric morphometric analysis of wing shape to identify populations of
Apis mellifera in Camagüey, Cuba.
Insects,
14(3), 306.
https://doi.org/10.3390/insects14030306
Ndungu, N., Vereecken, N. J., Gerard, M., Kariuki, S., Kati, L. K., Youbissi, A., ... & Nkoba, K. (2023). Can the shape of the wing help in the identification of African stingless bee species? (Hymenoptera: Apidae: Meliponini) wing geometric morphometrics: a tool for african stingless bee taxonomy.
International Journal of Tropical Insect Science,
43(2), 749-759.
https://doi.org/10.1007/s42690-023-00980-1
Nowierski, R. M. (2021). Pollinators at a Crossroads, Retrieved March 10, 2023. In USDA.
Parichehreh Dizji, S., Nadali, R., & Babayi, M. (2017). Study on some morphological characteristics of the Iranian race honey bee
Apis mellifera meda (Hymenoptera, Apidae) in north of Iran.
Plant Protection,
39(4), 79-91.
https://doi.org/10.22055/ppr.2016.12485
Rader, R., Bartomeus, I., Garibaldi, L. A., Garratt, M. P., Howlett, B. G., Winfree, R., ... & Woyciechowski, M. (2016). Non-bee insects are important contributors to global crop pollination.
Proceedings of the National Academy of Sciences,
113(1), 146-151.
https://doi.org/10.1073/pnas.1517092112
Rahimi, A., Mirmoayedi, A., Kahrizi, D., Zarei, L., & Jamali, S. (2018). Genetic variation in Iranian honey bees,
Apis mellifera meda Skorikow, 1829, (Hymenoptera: Apidae) inferred from PCR-RFLP analysis of two mtDNA gene segments (COI and 16S rDNA).
Sociobiology,
65(3), 482-490.
https://doi.org/10.13102/sociobiology.v65i3.2876
Rahimi, A., Mirmoayedi, A., Kahrizi, D., Zarei, L., & Jamali, S. (2016). Genetic diversity of Iranian honey bee (
Apis mellifera meda Skorikow, 1829) populations based on ISSR markers.
Cellular and Molecular Biology,
62(4), 53-58. https://doi.org/
10.14715/cmb/2016.62.4.10
Rahimi, A., Mirmoayedi, A., Kahrizi, D., Zarei, L., & Jamali, S. (2022). Molecular genetic diversity and population structure of Iranian honey bee (
Apis mellifera meda) populations: implications for breeding and conservation.
Journal of Plant Diseases and Protection,
129(6), 1331-1342.
https://doi.org/10.1007/S41348-022-00657-W/METRICS
Rebelo, A. R., Fagundes, J. M., Digiampietri, L. A., Francoy, T. M., & Biscaro, H. H. (2021). A fully automatic classification of bee species from wing images.
Apidologie, 1-15.
https://doi.org/10.1007/s13592-021-00887-1
Requier, F., Garnery, L., Kohl, P. L., Njovu, H. K., Pirk, C. W., Crewe, R. M., & Steffan-Dewenter, I. (2019). The conservation of native honey bees is crucial.
Trends in Ecology and Evolution,
34(9), 789-798.
https://doi.org/10.1016/J.TREE.2019.04.008
Rodrigues, P. J., Gomes, W., & Pinto, M. A. (2022). DeepWings©: automatic wing geometric morphometrics classification of honey bee (
Apis mellifera) subspecies using deep learning for detecting landmarks.
Big Data and Cognitive Computing,
6(3), 70.
https://doi.org/10.3390/bdcc6030070
Rohlf. F. James. (2000). NTSYSpc Numerical Taxonomy and Multivariate Analysis System, version 2.02e. Exeter Software, Setauket, NY.
Salehi, S., & Nazemi-Rafie, J. (2020). Discrimination of Iranian honeybee populations (
Apis mellifera meda) from commercial subspecies of
Apis mellifera L. using morphometric and genetic methods.
Journal of Asia-Pacific Entomology,
23(2), 591-598.
https://doi.org/10.1016/J.ASPEN.2020.04.009
Santoso, M. A. D., Juliandi, B., & Raffiudin, R. (2018, October). Honey bees species differentiation using geometric morphometric on wing venations.
Earth and Environmental Science, 197 (1), 012015.
https://doi.org/10.1088/1755-1315/197/1/012015
Sexton, J. P., Hangartner, S. B., & Hoffmann, A. A. (2014). Genetic isolation by environment or distance: which pattern of gene flow is most common?
Evolution,
68(1), 1-15.
https://doi.org/10.1111/evo.12258
Tahmasebi, G. H., Ebadi, R., Esmaili, M., & Kambousia, J. (1998). Morphological study of honeybee (
Apis mellifera L.) in Iran.
Journal of Water and Soil Science, 2(1), 89-101.
https://jcpp.iut.ac.ir/article-1-268-en.html
Wang, I. J., & Summers, K. (2010). Genetic structure is correlated with phenotypic divergence rather than geographic isolation in the highly polymorphic strawberry poison-dart frog.
Molecular Ecology,
19(3), 447-458.
https://doi.org/10.1111/j.1365-294X.2009.04465.x