DOI: 10.22080/jgr.2018.14623.1109

Comparative Phylogenetic Perspectives on the Evolutionary Relationships in the Brine Shrimp Artemia Leach, 1819 (Crustacea: Anostraca) Based on Secondary Structure of ITS1 Gene

Alireza Asem^{1, 2}, Pu Wang³ and Shi-Chun Sun^{2*}

¹ College of Life Sciences and Ecology, Hainan Tropical Ocean University, Yucai Rd, Sanya 572000, China ² Institute of Evolution and Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao 266003, China

³ Department of Ecology, Evolution and Behavior, University of Minnesota, MN 55108, USA

ARTICLEINFO	A B S T R A C T
Article history: Received 05 March 2018 Accepted 11 May 2018 Available online 31 August 2018	This is the first study on phylogenetic relationships in the genus Artemia Leach, 1819 using the pattern and sequence of secondary structures of internal transcribed spacer 1 (<i>ITS1</i>). Significant intraspecific variation in the secondary structure of <i>ITS1</i> rRNA was found in Artemia tibetiana. In the
<i>Keywords:</i> Phylogenetic Primary sequence Secondary structures Internal transcribed spacer 1 <i>Artemia</i> * <i>Corresponding author:</i> ⊠ S.C. Sun sunsc@ouc.edu.cn	phylogenetic tree based on joined primary and secondary structure sequences, <i>Artemia urmiana</i> and parthenogenetic populations displayed new lineages, and two New World species (<i>Artemia franciscana</i> and <i>Artemia persimilis</i>) were located in a basal clade that was not detected in previous studies. The close evolutionary relationship between <i>A. franciscana</i> and <i>A. persimilis</i> are expressively supported by the previous empirical and experimental investigation on the ability of hybridization (in natural habitats and lab conditions) and analysis on allozyme markers.
p-ISSN 2423-4257 e-ISSN 2588-2589	© 2015 UMZ. All rights reserved.

Please cite this paper as: Asem A, Wang P, Sun Sh. 2018. Comparative Phylogenetic Perspectives on the Evolutionary Relationships in the Brine Shrimp Artemia Leach, 1819 (Crustacea: Anostraca) Based on Secondary Structure of ITS1 Gene. J Genet Resour 4(2): 72-84. doi: 10.22080/jgr.2018.14623.1109

Introduction

Phylogenetics is the study of evolutionary history and relationships of biological taxa using mostly morphological, genetic and molecular characters. Sometimes the results due to different phylogenetic methods are paradoxical. The genus Artemia leach, 1819 (Crustacea: Anostraca) is one taxon representing this kind of paradox. Artemia includes three bisexual species in the New World (Artemia franciscana Kellogg, 1906, Artemia persimilis Piccinelli & Prosdocimi, 1968 and Artemia monica Verrill, 1869), four bisexual species in the old world (Artemia salina (Linnaeus, 1758), Artemia urmiana Günther, 1899, Artemia sinica Cai, 1989 and Artemia tibetiana Abatzopoulos et al., 1998) (Asem et al., 2010), and a large number of parthenogenetic populations including di-, tri-, tetra-, penta- and also heteroploids or even mixtures of different ploidies (Sun et al., 1999; Abatzopoulos et al., 2002a,b; Amat et al., 2007;

Zheng and Sun 2013). Although recent analyses based on mitochondrial DNA data confirmed that Asian bisexual species had a common ancestor (Maniatsi et al., 2011; Asem et al., 2016), a previous morphological study demonstrated that A. urmiana significantly distinguished from the other Asian species as well as the Mediterranean A. salina and the American A. franciscana (Triantaphyllidis et al., 1997). Baxevanis et al. (2005) claimed there was no consistency between results of genetic distance and morphometric characters of bisexual Artemia. They proved that A. urmiana and A. tibetiana were genetically close but significantly dissimilar in the morphology, while A. urmiana and A. persimilis had obvious genetic differentiation but were close in morphometric patterns. On the other hand, different genetic methods also showed inconsistent results for evolutionary relationships of genus Artemia. Analysis using the sequence of the nuclear internal transcribed spacer 1 (ITSI) region confirmed that A.

persimilis formed a distinct clade and was well differentiated from the others, and A. franciscana was placed as a clade sister to Asian bisexuals and parthenogenetics. (Baxevanis et al., 2006; Hou et al., 2006; Kappas et al., 2009; Vikas et al., 2012; Eimanifar et al., 2014). According to the results of 16S rDNA RFLP analyses (Unrooted NJ), A. franciscana located in a cluster, and A. salina + A. persimilis and three Asian bisexual species in two others separately (Baxevanis et al., 2005). Maniatsi et al. (2011) confirmed that COI (Cytochrome c Oxidase subunit I) data displayed the similar result with ITS1 data. Moreover, the analysis on COI sequences of 541 individuals showed that the Mediterranean A. salina, rather than the South American A. persimilis. was placed in a separate phylogenetic clade (Eimanifar et al., 2014). These consequences indicate that systematics of Artemia is still puzzling and therefore a comprehensive review is needed.

In the past decade, several studies have demonstrated the application of nuclear rRNA secondary structure models (mostly SSU-rRNA, ITS1 and ITS2) could clarify the evolutionary history of taxa (Gottschling & Plotner 2004; Campbell et al., 2005; Sun et al., 2010; Reblova et al., 2013; Yosefzadeh et al., 2012; Coleman, 2013; Hodac et al., 2014; Wang et al., 2015; Hosseinzadeh Colagar et al., 2016). For example, Wang et al. (2015) proved that using the sequence of secondary structure of SSU-rRNA gene could give different information than its primary sequence to better understand phylogenetic relationships among members of family Pseudokeronopsidae in the ciliates.

In this study, the secondary structures of the first partial region ITSI of bisexual/parthenogenetic Artemia are predicted compared. Phylogenetic trees and are constructed based on the primary and primary+ secondary sequences. The aims of this study are to model ITS1 secondary structures and examine the contribution of secondary sequence in understanding the evolutionary relationships in the genus Artemia.

Materials and Methods

Taxa and sequences

Sequences of the internal transcribed spacer 1

(ITSI) region were downloaded entirely from GenBank (http://www.ncbi.nlm.nih.gov/genbank/). Our dataset contained 313 ITS1 sequences including seven bisexual species and parthenogenetic populations with different ploidy degrees (i.e. di-, tri-, tetra- and pentaploidy) (Table 1). Sequences were aligned using Muscle in MEGA ver. 6.00 with default parameters (Tamura et al., 2013). The total sequences (including 111 haplotypes) were collapsed by DNAsp ver. 5.00 (Librado and Rozas, 2009). Streptocephalus proboscideus (AY519840) was used as an outgroup (Baxevanis et al., 2006; Eimanifar et al., 2014).

The first partial ITS1 region which ranged from 294 bp to 340 bp (started with a conserved sequence of GTTT and stopped with TCKC) was chosen for secondary structure analysis followed by secondary structure model for ITS1 suggested by Gottschling and Plötner (2004), using ΔG minimization, similarity and constraint folding (Mathews et al., 1999; Reuter and Mathews, 2010) using software (Zuker, mfold onlen 2003). Additionally, tree topology from the primary sequence of this part was the same as that from the whole *ITS1* sequence (for more information see results and discussion sections).

Secondary structure prediction

The secondary structures were predicted for each haplotype with respect to same shapes for conserved parts between species/populations and minimum free-energy optimization (Zuker, 1989, Hofacker et al., 2002) using the mfold web server (http://unafold.rna.albany.edu/?q= mfold/RNA-Folding-Form) (Zuker, 2003). The structures were aligned and further edited by 4SALE ver. 1.7 (Seibel et al., 2006). The sequence alignments were manually edited via comparison between primary and secondary positions to find the best homogeneous arrangements. 4SALE ver. 1.7 (Seibel et al., 2006) was used to draw the general patterns of secondary structure based on the results of conservation rates. The lengths of helices and single strands and the number of paired nucleotides were counted for each general pattern (Table 2).

Species/Population	Abbreviation	Haplotype names	Accession numbers	References			
Artemia urmiana	URM	URM1	DQ201275	Baxevanis et al., 2006			
		URM2	DQ201276	Baxevanis et al., 2006			
		URM3	DQ201277	Baxevanis et al., 2006			
		URM4	KF736251	Maccari et al., 2013			
		URM5	KF736252	Maccari et al., 2013			
		URM6	KF703810-15	Eimanifar et al., 2014			
		URM6	KF703820	Eimanifar et al., 2014			
		URM6	KF703822-23	Eimanifar et al., 2014			
		URM7	KF703816	Eimanifar et al., 2014			
		URM8	KF703817	Eimanifar <i>et al</i> 2014			
		URM9	KF703818	Eimanifar <i>et al</i> 2014			
		URM10	KF703819	Fimanifar <i>et al</i> 2014			
		URM11	KF703821	Fimanifar <i>et al</i> 2014			
		URM12	KF703824	Eimanifar <i>et al.</i> 2014			
		URM12*	DO060026	Hou at al 2006			
		UDM12*	DQ007720	How at al. 2006			
		UDM12*	VE726240 50	Magazzi et al. 2012			
Automia tihatiana	TID	TID 1	NF/30249-30	Revenuence at al. 2006			
Ariemia libeliana	TIB	TID1	DQ201269-70	Baxevanis <i>et al.</i> , 2006			
		TIB2	KF / 36290-95	Maccarl <i>et al.</i> , 2013			
		TIB3	KF/03//8	Eimanifar <i>et al.</i> , 2014			
		TIB4	KF/03/85	Eimanifar <i>et al.</i> , 2014			
	a	TIB5	KF703798	Eimanifar <i>et al.</i> , 2014			
Artemia sinica	SIN	SIN1	DQ069929	Hou et al., 2006			
		SIN1	DQ069930	Hou et al., 2006			
		SIN2	DQ069931	Hou et al., 2006			
		SIN3	DQ084196	Hou et al., 2006			
		SIN4	DQ084197	Hou et al., 2006			
		SIN5	DQ084198	Hou et al., 2006			
		SIN6	DQ201285	Baxevanis et al., 2006			
		SIN7	DO201286	Baxevanis et al., 2006			
		SIN8	DO201287	Baxevanis et al 2006			
		SIN9	F1004945	Kappas <i>et al.</i> 2009			
		SIN10	KF736296-97	Maccari <i>et al</i> 2013			
		SIN11	KF703766	Fimanifar <i>et al.</i> 2014			
		SIN11 SIN11	KF702700	Eimanifar et al. 2014			
		SINT1 SINT1	KF702706	Eimanifar et al. 2014			
4	CD	SIN12	KF/03/90	Elmanitar <i>et al.</i> , 2014			
Artemia sp.	SP	SPI	DQ084194	Hou et al., 2006			
Artemia salina	SAL	SALI	DQ201302	Baxevanis et al., 2006			
		SAL2	DQ201303	Baxevanis et al., 2006			
		SAL3	DQ201304	Baxevanis et al., 2006			
		SAL4	DQ201305	Baxevanis et al., 2006			
		SAL5	DQ201306	Baxevanis et al., 2006			
		SAL6	DQ201307	Baxevanis et al., 2006			
		SAL7	DQ201308	Baxevanis et al., 2006			
		SAL8	DQ201309	Baxevanis et al., 2006			
		SAL9	FJ004946	Kappas et al., 2009			
		SAL10	KF703762	Eimanifar et al., 2014			
Artemia persimilis	PER	PER1	DQ069925	Hou et al., 2006			
		PER2	DO084192	Hou <i>et al.</i> 2006			
		PER3	DO201263	Baxevanis et al 2006			
		PER4	DO201264	Baxevanis et al. 2006			
		PER 5	DO201265	Baxevanis et al 2006			
		PER6	DO201266	Baxevanis et al 2006			
		PFR7	DO201267	Baxevanis et al 2006			
		DED 8	DO201267	Baxevanis et al. 2000			
		DEDO	E1004022 22	Kappas at al 2000			
		DED 10	F1004922-23	Kappas et al., 2009			
Automia fuancio	ED A	I EKIU ED A 1	DO060022	Happas $e_i a_{l,i} 2009$			
uriemia jranciscana	гка	FKA1 ED A 1	DQ009923	Hou et al., 2006			
		FKAI FDA1	DQ084190	поц <i>et al.</i> , 2006			
		rkal Fran	DQ201297	Baxevanis <i>et al.</i> , 2006			
		FRA2	DQ069924	Hou <i>et al.</i> , 2006			
		FRA2	FJ004935-36	Kappas et al., 2009			
		FRA2	FJ004938-39	Kappas <i>et al.</i> , 2009			
		FRA2	FJ004941-42	Kappas et al., 2009			
		FRA2	GU252106	Maniatsi et al., 2009			
		FRA2	GU323291	Vikas et al., 2012			
		FRA2	GU323293-94	Vikas et al., 2012			
		FRA2	GU323296-97	Vikas et al., 2012			
		FRA2	GU323309-12	Vikas et al., 2012			
		FRA2	GU323314	Vikas et al. 2012			
		FRA2	GU323316	Vikas et al 2012			
		FD A 2	DO08/101	Hon at al 2004			
		LINAD	177704171	μ_{0}			

Table 1. Sampling information of Artemia specimens/sequences (all downloaded from GenBank) used in the present study.

Species/Population	Abbreviation	Haplotype names	Accession numbers	References
Artemia franciscana	FRA	FRA3	DQ201298	Baxevanis et al., 200
		FRA4	DQ201289	Baxevanis et al., 200
		FRA4	DQ201291	Baxevanis et al., 200
		FRA4	DQ201295	Baxevanis et al., 200
		FRA4	FJ004933-34	Kappas et al., 2009
		FRA4	GU252102-04	Maniatsi et al., 2009
		FRA4	GU323298	Vikas et al., 2012
		FRA4	GU323301-02	Vikas et al., 2012
		FRA4	GU323304-06	Vikas et al., 2012
		FRA4	GU323308	Vikas et al., 2012
		FRA4	GU323315	Vikas et al., 2012
		FRA4	GU323317	Vikas et al., 2012
		FRA5	DO201290	Baxevanis et al., 200
		FRA6	DO201292	Baxevanis <i>et al</i> 200
		FRA7	DO201293	Baxevanis <i>et al</i> 200
		FRA8	DO201294	Baxevanis <i>et al</i> 200
		FRA9	DQ201291	Baxevanis et al. 200
		FRAG	FI00/925-31	Kannas at al 2000
		FRAQ	GU323200	Vikas <i>et al</i> 2012
		FD A 10	DO201200	Payayanis at al 200
		FRA11	DQ201299	Baxevanis et al. 200
		FDA12	DQ201300	Baxevanis <i>et al.</i> , 200
		FD A 12	E1004022	Kappes at al. 2000
		FKAI3 FDA14	FJ004952 FI004027	Kappas <i>et al.</i> , 2009
		гКА14 ГРА15	rJ00493/	Kappas <i>et al.</i> , 2009
		FRAIS	FJ004940	Kappas <i>et al.</i> , 2009
		FRA16	GU252105	Maniatsi et al., 2009
		FRA17	GU252107	Maniatsi et al., 2009
		FRA18	GU323289	Vikas <i>et al.</i> , 2012
		FRA19	GU323290	Vikas <i>et al.</i> , 2012
		FRA19	GU323292	Vikas <i>et al.</i> , 2012
		FRA20	GU323295	Vikas <i>et al.</i> , 2012
		FRA21	GU323300	Vikas <i>et al.</i> , 2012
		FRA22	GU323303	Vikas et al., 2012
		FRA23	GU323307	Vikas et al., 2012
		FRA24	GU323313	Vikas et al., 2012
		FRA25	KF703763	Eimanifar et al., 201
		FRA26	KF703765	Eimanifar et al., 201
		FRA26	KF703770	Eimanifar et al., 201
		FRA26	KF703781	Eimanifar et al., 201
		FRA26	KF703787-88	Eimanifar et al., 201
		FRA26	KF703808	Eimanifar et al., 201
		FRA27	KF703767	Eimanifar et al., 201
		FRA27	KF703795	Eimanifar <i>et al</i> 201
		FRA28	KF703771	Eimanifar et al., 201
		FRA28	KF703773	Eimanifar et al., 201
		FR A 28	KF703777	Eimanifar <i>et al.</i> 201
		FR 4 28	KF703801	Fimanifar at al 201
		FR A 28	KF703826	Eimanifar <i>et al</i> 201
		FD A 28	KE703020	Eimanifar et al. 201
		FD A 20	NF/03030 KF702774	Eimanifar <i>et al.</i> , 201
		FKA29 FD A 20	КГ /US / /0 V F702770	Eimanitar et al., 201
		FKA3U FD A 21	NF/U3//9 VE702784	Eimanifar <i>et al.</i> , 201
		FKA31	Kr /05/84	Elmanitar <i>et al.</i> , 201
		FRA32	KF/03786	Eimanitar <i>et al.</i> , 201
		FRA33	KF703791	Eimanitar et al., 201
		FRA34	KF703797	Eimanifar et al., 201
		FRA35	KF703799	Eimanifar et al., 201
		FRA35	KF703827	Eimanifar et al., 201
		FRA35	KF703834	Eimanifar et al., 201
		FRA36	KF703800	Eimanifar et al., 201
		FRA37	KF703806	Eimanifar et al., 201
		FRA36	KF703800	Eimanifar et al., 201
		FRA38	KF703848	Eimanifar et al., 201
		FRA38	KF703854	Eimanifar et al., 201
arthenogenetic populations	PART	PART1	DQ201271-72	Baxevanis et al., 200
6 F-F		PART1	DQ201274	Baxevanis et al. 200
		PART2	DO201273	Baxevanis et al 200
		PART3	DO201278	Baxevanis et al 200
		PART4	DO201270	Baxevanis et al 200
		DADTS	DO201273	Baxevanis et al. 200
		IANIJ DADTA	DQ201200	Baxevanis <i>et al.</i> , 200
		FARIO DADTC	DQ201281-83	Eimanifer et al., 200
		rakio Dadte	КГ/US8U4 VIII 92920-27	Limanitar et al., 201
		PARI6	KU183830-36	Asem <i>et al.</i> , 2016
		PAKI / *	rJ004943-44	Kappas <i>et al.</i> , 2009

Species/Population	Abbreviation	Haplotype names	Accession numbers	References
Parthenogenetic populations	PART	PART7*	KF736253-73	Maccari et al., 2013
		PART7*	KF736276-89	Maccari et al., 2013
		PART7*	KF703764	Eimanifar et al., 2014
		PART7*	KF703803	Eimanifar et al., 2014
		PART7*	KF703807	Eimanifar et al., 2014
		PART7*	KF703809	Eimanifar et al., 2014
		PART7*	KF703825	Eimanifar et al., 2014
		PART7*	KF703830	Eimanifar et al., 2014
		PART7*	KF703832-33	Eimanifar et al., 2014
		PART7*	KF703835	Eimanifar et al., 2014
		PART7*	KF703837-39	Eimanifar et al., 2014
		PART7*	KF703844	Eimanifar et al., 201-
		PART7*	KF703851	Eimanifar et al., 2014
		PART7*	KF703853	Eimanifar et al., 2014
		PART7*	KU183800-04	Asem et al., 2016
		PART7*	KU183815-19	Asem et al., 2016
		PART7*	KU183820-24	Asem et al., 2016
		PART7*	KU183825-29	Asem et al., 2016
		PART7*	KU183805-09	Asem et al., 2016
		PART7*	KU183810-14	Asem et al., 2016
		PART7*	KU183843-47	Asem et al., 2016
		PART8	KF736274-75	Maccari et al., 2013
		PART9	KF703768	Eimanifar et al., 201
		PART10	KF703769	Eimanifar et al., 201
		PART10	KF703774-75	Eimanifar et al., 201
		PART10	KF703780	Eimanifar et al., 201
		PART10	KF703782	Eimanifar et al., 201
		PART10	KF703828	Eimanifar et al., 201
		PART10	KF703840	Eimanifar et al., 201
		PART10	KF703843	Eimanifar <i>et al.</i> , 201
		PART10	KF703845-46	Eimanifar <i>et al.</i> , 201
		PART11	KF703772	Eimanifar <i>et al.</i> , 201
		PART12	KF703783	Eimanifar <i>et al.</i> , 201
		PART13	KF703792	Eimanifar <i>et al.</i> , 201
		PART14	KF703805	Eimanifar <i>et al</i> 201
		PART15	KF703831	Eimanifar <i>et al.</i> 201
		PART16	KF703841	Eimanifar et al. 201
		PART17	KF703802	Eimanifar <i>et al.</i> 201
		PART17	KF703852	Eimanifar <i>et al.</i> 201
		PART18	DO201284	Baxevanis et al 200
		PART19	DO201288	Baxevanis et al 200
		PART20	KF703789	Eimanifar <i>et al</i> 2014
		PART21	KU183838-42	Asem $et al = 2016$
		PART22	KU183837	$\Delta \text{sem et al} = 2016$

* URM13 and PART7 share the same haplotype.

Table 2. A statistic for the composition of the secondary structures proposed in this study. Data shown as number of nucleotides (L and S) or number of Nucleotide pairs (P). H_x : The xth helix; L: Length; P: Paired nucleotides; S_{x-y} : Single strand between the xth and yth helix. Abbreviations of species/populations are defined in Table S1.

Sn /D	F	Iı	S _{I-}	H	lπ	SII-	Н	lm	S _{III-}	Н	[_{IV}	S _{IV-}	Н	Iv	S _{V-}	H	VI	S _{VI-}	Н	VII	S _{VII-}	Hv	лп
эр./г.	L	Р	п	L	Р	ш	L	Р	IV	L	Р	v	L	Р	VI	L	Р	VII	L	Р	vш	L	Р
FRA	18	7	3	46	17	16	58	22	7	28	10	2	27	8	4	20	8	1	62	22	1	24	7
PER	22	7	1	22	8	14	65	23	3	28	7	3	30	9	2	20	5	3	81	27	3	13	4
SAL	51	19	2	27	7	4	57	18	6	29	10	2	29	7	3	19	6	0	58	22	2	25	7
TIB^{1*}	51	17	2	27	11	1	56	19	6	29	10	2	27	11	3	21	7	0	55	20	4	24	8
TIB^{2*}	49	17	1	10	3	3	56	19	6	29	10	2	27	11	3	21	7	0	55	20	4	24	8
SIN	50	18	2	27	9	1	56	19	6	29	10	2	26	9	3	21	8	0	55	22	4	24	8
URM	48	17	2	27	11	1	51	20	6	29	10	2	27	9	2	20	7	0	51	17	4	24	8
SP	51	17	2	27	11	1	56	21	6	29	10	2	27	9	3	21	7	0	55	20	4	24	8
PART	51	17	2	27	11	1	56	19	6	29	10	2	27	9	3	21	7	0	55	20	4	24	8

Sp.: Species, P.: Populations * TIB¹: Haplotypes TIB2-5; TIB²: Haplotype TIB1

Phylogenetic analyses

Phylogenetic analyses were performed based on the alignment of primary sequences for both the first partial and whole ITS1 region, as well as the alignment consisting of sequence information of joined primary and secondary structure. Phylogenetic trees of haplotypes were designed by Maximum Likelihood (ML) in RAxML-HPC BlackBox 8.2.3 on XSEDE (Miller et al., 2010), Bayesian Inference (BI) as implemented in MrBayes 3.2.2 on XSEDE (Miller et al., 2010), and Neighbor-Joining (NJ) in MEGA ver. 6.00 (Tamura et al., 2013). For ML and NJ, the robustness of branches was assessed by default setting and 1000 bootstrap replicates, respectively. For BI the best nucleotide substitution model of DNA was selected based on MrModeltest 2.2 (Nylander, 2004). Phylogenetic trees based on the primary sequences and sequences of secondary structures (hereinafter referred to as 'sequencestructure') of the partial ITS1 region were constructed via ProfDistS 0.9.9 (Wolf et al., 2008) with 1000 bootstrap replicates. All trees were visualized using FigTree v 1.4.0 2012). (Rambaut, For the Maximum Likelihood and Neighbor-Joining bootstraps, the values <70 were regarded as low, 70-94 as moderate, and ≥95 as high (Hillis & Bull, 1993). For the Bayesian posterior probabilities, the values <0.94 were considered as low, and ≥ 0.95 as high following (Alfaro *et al.*, 2003).

Results

Secondary structure

All the analyzed *Artemia* shared a similar fingers-pattern of secondary structure with eight helices (Fig. 1), contrast *Streptocephalus proboscideus* (out group) in the same alignment length have a significant difference in secondry structure with six helices (Fig. 2). According to the rate of conservation, a significant intraspecific difference was only observed in the second helix of *A. tibetiana* (Fig. 3).

Statistics of the numeric characters of the general secondary structure are shown in Table 2. Helices IV and VI were conservative in length (28 to 29 bp and 19 to 21 bp, respectively), while helices II and I showed high variability (10 to 46 bp and 18 to 51 bp, respectively). The substitution rate of paired

nucleotides had almost same pattern with the variation of helical length; the lowest substituted numbers of paired nucleotides were observed in Helices IV and VI (7 to 10 bp and 5 to 8 bp, respectively), but the highest rate belonged to helices II and I (3 to 17 bp and 7 to 19 bp, respectively). The highest length variations of the single strand between helix were present in S_{II-III} (1 to16 bp; with the longest ones appearing in FRA (16 bp) and PER (14 bp), respectively). TIB displayed highly intraspecific variation in the length of helix II (27 bp *vs* 10 bp) and paired nucleotides (11 bp *vs* 3 bp) (Figs. 1 and 3).

Comparison of phylogenies based on primary and secondary structure sequences

All methods of ML, NJ, and BI demonstrated uniform tree topology for primary sequences of the first partial ITS1 region (Fig. 4a). The genus Artemia was divided into two distinct and well-supported clusters. Cluster I was further divided into four clades, with either of the Mediterranean A. salina and American A. franciscana constituting a separate clade, and the Asian bisexual species and parthenogenetic populations constituting the other two clades. The South American A. persimilis is placed in a basal position with long branch (Fig. 4a). In addition, the ML (Baxevanis et al., 2006; Eimanifar et al., 2014), BI (Baxevanis et al., 2006; Eimanifar et al., 2014) and NJ (this study, result not shown) analyses based on the complete primary sequence of ITS1 also generated correspondent tree topologies. Therefore, the first partial region, which ranged from 294 bp to 340 bp, was likely to have the same evolutionary pattern as the total sequence of ITS1.

The sequence-structure tree, by the profile neighbor-joining (PNJ) method, displayed same general pattern for parthenogens, Asian and Mediterranean bisexual Artemia; whereas A. franciscana and A. persimilis were clustered into a basal clade in the tree (Fig.4b). While no significant intra-specific variation was determined with primary sequences for the bisexual species (Fig. 4a), the results of sequence-structure showed markedly intraspecific variation within A. urmiana, which was divided into two different sub-clades (support values = 95) (Fig. 4b). For the parthenogenetic Artemia, PART_{19,20} were collected with SINs; the others were collected

with Asian bisexual species in trees based on primary sequence (Fig. 4a). In contrast, they were divided into four major groups in the sequence-structure tree, with the PART_{6,15,16,18,22} placed with *A. tibetiana*, PART_{1-5,7-14,17} placed with *A. urmiana*, PART_{19,20} placed with *A. sinica*, and PART₂₁ located separately (Fig. 4b).

Discussion

This study provides the first evidence of phylogeny of the Anostraca *Artemia*, using the sequence of RNA secondary structure.

Even if the general secondary structure of *ITS1* shows a fingers-pattern in all the studied species, interspecific variation is considerable in the length of helices, the paired structure and the length of single strands (Fig. 1). Though phylogenetic trees of total primary

sequence of *ITS1* (Baxevanis *et al.*, 2006, Hou *et al.*, 2006; Kappas *et al.*, 2009; Vikas *et al.*, 2012, Eimanifar *et al.*, 2014), partial primary sequence (Fig. 4a) and sequence-structure (Fig. 4b) showed a single collection for *A. tibetiana*, a remarkable intraspecific variation was detected in the second helix of *A. tibetiana* (Figs. 1 and 3).

Asem *et al.* (2016) proved that the nuclear marker *ITS1* could not clearly sort *A. urmiana*, *A. tibetiana* and parthenogenetic populations in phylogenetic trees (see also Maccari *et al.*, 2013; Eimanifar *et al.*, 2014; this study Fig. 4a); but the phylogenetic tree based on sequence-secondary of *ITS1* displayed an appreciable differentiation for these groups in this study (Fig. 4b). *Artemia tibetiana* clearly located in a separated clade.

Fig. 1. Predicted general secondary structure for the *ITS1* partial regions of genus *Artemia*: TIB¹; Haplotypes TIB2-5; TIB²; Haplotype TIB1; Arrows point to the region with different patterns between two secondary structures of TIB. (Abbreviations of species/population are defined in Table 1).

Fig. 2. Predicted general secondary structure for the *ITS1* partial regions of *Streptocephalus proboscideus* (outgroup).

TIB ¹	CGUUGU	UAUUG	A U A	CACGU	U C C C G U G	6 U U U G G U G U U U	
TIB ²	C G U U . C		· · · [C · C G U		6 U U U G G U G U U U	
]	
TIB ¹))	(((((. ())))		
TIB ²))))).			(• ((•			

Fig. 3. The primary (upper) and secondary (lower) sequences in Helix II of *ITS1* of *Artemia tibetiana* (boxes show the position of Helix II). TIB¹: Haplotypes TIB2-5; TIB²: Haplotype TIB1. (Abbreviations of species/population are defined in Table 1).

Fig. 4. Simplified phylogenetic trees of the genus *Artemia* based on 313 *ITS1* sequences. *Streptocephalus proboscideus* was used as an out-group. **a**) ML/BI/NJ trees inferred from primary sequence. Numbers on the nodes are: the bootstrap value from maximum-likelihood / that of neighbor-joining / the Bayesian posterior probability values. **b**) PNJ tree based on sequence-structure. Numbers at the nodes represent the bootstrap values from profile neighbor-joining. (Abbreviations of species/population are defined in Table 1).

The highest intra-population variation was shown in the parthenogenetic *Artemia* with four lineages which two ones (PART_{1-5,7-14,17} and PART₁₉₋₂₀) shared same subclades with *A. urmiana* and *A. sinica* respectively, and two others (PART_{6,15,16,18,22} and PART₂₁) located in unique separated platforms. In addition, *A. urmiana* presented a level of intraspecific variation in two subclades (Fig. 4b). Our findings showed the secondary structure shapes could not support the observed intraspecific/population differentiation by

sequence-secondary tree among variants of PART and URM (Figs. 4b, 5, and 6), so that parthenogenetic different lineages of populations and А. urmiana in the phylogenetic tree (Fig. 4b) have same secondary structures with their general predicted patterns (Figs. 1, 5, and 6). This finding confirmed that phylogenetic analysis by combined primary and secondary sequences can display remarkable diversification in comparison of using only secondary structure.

Fig. 5. Predicted secondary structure for partial *ITS1* regions of parthenogenetic *Artemia*, based on four separated lineages by sequence-structure from profile neighbor-joining (See Fig. 4b). (Abbreviations of population are defined in Table 1).

With regards to the results of mitochondrial markers, parthenogenetic *Artemia* is a polyphyletic group, a fact which, di- and tetraploid parthenogenetic *Artemia* originated from *A. urmiana* and *A. sinica*, and tri- and pentaploids divided from diploid and tetraploid *Artemia*, respectively (Maniatsi *et al.*, 2011; Asem *et al.*, 2016). Contrary to the primary sequence of *ITS1*, sequence-structure was also able to differentiate parthenogenetic

populations into different lineages, but not able to distinguish ploidy levels. The members of two major groups (i.e. PART_{1-5,7-14,17} and PART_{6,15,16,18,22}) include all ploidy degrees, besides that two other lineages (PART_{19,20} and PART₂₁) keep only tetraploids (Table 1, for more information about ploidy levels, see Baxevanis *et al.*, 2006; Kappas *et al.*, 2009; Maniatsi *et al.*, 2011; Asem *et al.*, 2016).

Fig. 6. Predicted secondary structure of *ITS1* partial regions for *Artemia urmiana* based on two separated lineages by sequence-structure from profile neighbor-joining (See Fig. 4b).

Different genetic methods showed almost opposed evolutionary history for taxa of genus Artemia, especially regarding the position of A. salina and A. persimilis (see Introduction section). While all genetic studies indicated that there was no close phylogenetic relationship between A. franciscana and A. persimilis (Baxevanis et al., 2005; 2006; Hou et al., 2006; Kappas et al., 2009; Maniatsi et al., 2011; Vikas et al., 2012; Eimanifar et al., 2014), phylogenetic analysis based on allozyme markers showed that A. franciscana and A. persimilis were located in the basal clade together (Beardmore and Abreu-Grobois, 1983). This finding agrees with the occurrence of natural hybridization between A. persimilis and A. franciscana. Several morphologic, genetic and cytogenetic studies have documented the existence of occasional degrees of natural hybridization and/or introgression between A. franciscana and A. persimilis in the Las Tunas Lagoon population (Córdoba Province, Argentina) (Papeschi et al., 2000; Amat et al., 2004; Cohen, 2012). Morphometric analyses of adults (Papeschi et al., 2000; Amat et al., 2004) and phylogenetic analyses using genetic markers including 16S, COI, ITS1 and p26 (Ruiz et al., 2008; Maniatsi et al., 2009) grouped Las Tunas with A.

proved that most meiotic cells of adult males had 21 haploid chromosomes; others had 22 or 23 chromosomes with irregular meiosis. This abnormality attributed was to а hybridization/introgression between А. franciscana (n = 21) and A. persimilis (n = 22) (Papeschi et al., 2000). Another controversial case was documented for the population of Pichilemu saltworks (Cardenal Caro Province, Chile). Based on allozymes (Gajardo et al., 1995), morphometric data of adults (Zuñiga et al., 1999) and 42 diploid chromosomes (Parraguez et al., 2009), this population has been imputed to A. franciscana, whereas analyses referring to chromocenter numbers (Gajardo et al., 2001a), 16S rRNA RFLP patterns (Gajardo et al., 2004), and ITS1 sequence (Baxevanis et al., 2006) referred this population to A. persimilis. The possibility of hybridization between A. franciscana and A. persimilis has previously been observed in cross-fertility laboratory experiments (Gajardo et al., 2001b). Since natural hybridization usually take place between very closely related species or sister taxa (Coyne and Orr, 1997; Agatsuma et al., 2000; Price and Bouvier 2002; Seehausen, 2004; Mallet, 2005; Mallet et al., 2007; Kovalev et al., 2016), the existence of

franciscana. Meanwhile, the cytogenetic study

natural hybridization between A. franciscana and A. persimilis further emphasizes that these species might have close evolutionary relationship. Moreover, in the ITS1 primary sequence trees, A. franciscana was sorted as a sister clade of the Asian bisexual species, but cross-breeding laboratory tests have documented complete infertility between A. franciscana and Asian bisexual species (Pilla & Beardmore, 1994; Abatzopoulos et al., 2002a). Therefore, phylogenetic analysis using both primary and secondary sequences may better reveal the relationships of these taxa than using only primary sequences.

In conclusion, the secondary structure and sequence-structure of *ITS1* DNA in the genus *Artemia* could be a powerful tool for understanding phylogenetic relationships among taxa. The secondary structure shows a considerable intraspecific variation in *Artemia tibetiana*, and sequence-structure reveals new lineages for parthenogenetic populations and *A. urmiana*. The New World species in the same cluster by sequence-structure analysis agrees with the ability of natural hybridization and the result from allozyme markers.

Acknowledgements

This study was funded by the Fundamental Research Funds (201562029) for the Central Universities (China). The help of Prof. Okazaki (Weber State University, USA) with the English text is highly appreciated.

References

- Abatzopoulos TJ, Beardmore JA, Clegg JS, Sorgeloos P. 2002b. *Artemia*: basic and applied biology. Kluwer Academic Publishers, Dordrecht, the Netherlands.
- Abatzopoulos TJ, Kappas I, Bossier P, Sorgeloos P, Beardmore JA. 2002a. Genetic characterization of *Artemia tibetiana* (Crustacea: Anostraca). *Biol J Linnean Soc* 75: 333-344.
- Agatsuma T, Arakawa Y, Iwagami M, Honzako Y, Cahyaningsih U, Kang Sh-Y, Hong SJ. 2000 Molecular evidence of natural hybridization between *Fasciola hepatica* and *F. gigantica*. *Parasitol Int* 49: 231-238.
- Alfaro ME, Zoller S, Lutzoni F. 2003. Bayes or bootstrap? A simulation study comparing the performance of Bayesian Markov Chain

Monte Carlo sampling and boostrapping in assessing phylogenetic confidence. *Mol Biol Evol* 20: 255-266.

- Amat F, Cohen RG, Hontoria F, Navarro JC. 2004. Further evidence and characterization of *Artemia franciscana* (Kellogg, 1906) populations in Argentina. *J Biogeogr* 31: 1735-1749.
- Amat F, Hontaria F, Navarro JC, Vieira N, Mura G. 2007. Biodiversity loss in the genus Artemia in the Western Mediterranean Region. Limnetica 26: 177-194.
- Asem A, Eimanifar A, Sun SC. 2016. Genetic variation and evolutionary origins of parthenogenetic *Artemia* (Crustacea: Anostraca) with different ploidies. *Zool Scr* 45: 421-436.
- Asem A, Rastegar-Pouyani N, De los Rios P. 2010. The genus *Artemia* Leach, 1819 (Crustacea: Branchiopoda): true and false taxonomical descriptions. *Lat Am J Aquat Res* 38: 501-506.
- Baxevanis AD, Kappas I, Abatzopoulos TJ. 2006. Molecular phylogenetics and asexuality in the brine shrimp *Artemia*. *Mol Phylogenet Evol* 40: 724-738.
- Baxevanis AD, Triantaphyllidis GV, Kappas I, Triantafyllidis A, Triantaphyllidis CD, Abatzopoulos TJ. 2005. Evolutionary assessment of *Artemia tibetiana* (Crustacea, Anostraca) based on morphometry and 16S rRNA RFLP analysis. *J Zool Sys Evol Res* 43: 189-198.
- Beardmore JA, Abreu-Grobois FA. 1983. Taxonomy and evolution in the brine shrimp *Artemia*. In: Oxford GS, Rollinson D (eds) Protein Polymorphism: Adaptive and Taxonomic Significance. Academic Press, London, pp. 153-164.
- Campbell CS, Wright WA, Cox M, Vining TF, Major CS, Arsenault MP. 2005. Nuclear ribosomal DNA internal transcribed spacer 1 (ITS1) in *Picea* (Pinaceae): sequence divergence and structure. *Mol Phylogenet Evol* 35: 165-185.
- Cohen RG. 2012. Review of the biogeography of *Artemia* Leach, 1819 (Crustacea: Anostraca). *Int J Artemaia Biol* 2: 9-23.
- Coleman AW. 2013. Analysis of mammalian rDNA internal transcribed spacers. *PLoS One* 8(11): e79122.
- Coyne JA, Orr HA. 1997. Patterns of speciation in *Drosophila* revisited. *Evolution* 51: 295-303.

- Eimanifar A, Van Stappen G, Marden B, Wink M. 2014. *Artemia* biodiversity in Asia with the focus on the phylogeography of the introduced American species *Artemia franciscana* Kellogg, 1906. *Mol Phylogenet Evol* 79:392-403.
- Gajardo G, Beardmore JA, Sorgeloos P. 2001a. International study on *Artemia* LXII. Genomic relationships between *Artemia franciscana* and *A. persimilis*, inferred from chromocentre numbers. *Heredity* 87:172-177.
- Gajardo G, Conceicao DM, Weber L, Beardmore JA. 1995. Genetic variability and inter populational differentiation of *Artemia* strains from South America. *Hydrobiologia* 302:21-29.
- Gajardo G, Crespo J, Triantafyllidis A, Tzika A, Baxevanis A, Kappas I, Abatzopoulos TJ. 2004. Species identification of Chilean *Artemia* populations based on mitochondrial DNA RFLP analysis. J *Biogeogr* 31:547-555.
- Gajardo G, Parraguez M, Beardmore JA, Sorgeloos P. 2001b. Reproduction in the brine shrimp *Artemia*: evolutionary relevance of laboratory cross-fertility tests. *J Zool* 253:25-32.
- Gottschling M, Plotner J. 2004. Secondary structure models of the nuclear internal transcribed spacer regions and 5.8S rRNA in Calciodinelloideae (Peridiniaceae) and other dinoagellates. *Nucleic Acids Res* 32: 307-315.
- Hillis DM, Bull JJ. 1993. An empirical test of bootstrapping as a method for assessing confidence In phylogenetic analysis. *Syst Boil* 42: 182-192.
- Hodac L, Scheben AP, Hojsgaard D, Paun O, Horandl E. 2014. ITS Polymorphisms shed light on hybrid evolution in apomictic plants: A case study on the ranunculus auricomus complex. *PLoS One* 9: e103003.
- Hofacker IL, Fekete M, Stadler PF. 2002. Secondary structure prediction for aligned RNA sequences. *J Mol Biol* 319: 1059-1066.
- Hosseinzadeh Colagar A, Yousefzadeh H, Shayanmehr F, Jalali SG, Zare H, Tippery NP. 2016. Molecular taxonomy of Hyrcanian *Alnus* using nuclear ribosomal ITS and chloroplast trnH-psbA DNA barcode markers. *Syst Biodiver*, 14: 88-101.
- Hou L, Bi X, Zou X, He C, Yang L, Qu R, Liu Z. 2006. Molecular systematics of bisexual

Artemia populations. Aquacult Res 37: 671-680.

- Kappas I, Baxevanis AD, Maniatsi S, Abatzopoulos TJ. 2009. Porous genomes and species integrity in the branchiopod *Artemia. Mol Phylogenet Evol* 52: 192-204.
- Kovalev SY, Golovljova IV, Mukhacheva TA. 2016. Natural hybridization between *Ixodes ricinus* and *Ixodes persulcatus* ticks evidenced by molecular genetics methods. *Ticks Tick-borne Dis* 7: 113-118.
- Librado P, Rozas J. 2009. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. *Bioinformatics* 25: 1451-1452.
- Maccari M, Amat F, Gómez A. 2013. Origin and genetic diversity of diploid parthenogenetic *Artemia* in Eurasia. *PLoS One* 8: e83348.
- Mallet J, Beltrán M, Neukirchen W, Linares M. 2007. Natural hybridization in heliconiine butterflies: the species boundary as a continuum. *BMC Evol Biol* 7:1-16.
- Mallet J. 2005. Hybridization as an invasion of the genome. *Trends Ecolo Evol* 20:229-237.
- Maniatsi S, Baxevanis AD, Kappas I, Deligiannidis P, Triantafyllidis A, Papakostas S, Bougiouklis D, Abatzopoulos TJ. 2011. Is polyploidy a persevering accident or an adaptive evolutionary pattern? The case of the brine shrimp *Artemia*. *Mol Phylogenet Evol* 58: 353-364.
- Maniatsi S, Kappas I, Baxevanis AD, Farmaki T, Abatzopoulos TJ. 2009. Sharp Phylogeographic Breaks and Patterns of Genealogical Concordance in the Brine Shrimp *Artemia franciscana*. *Int J Mol Sci* 10: 5455-5470.
- Mathews DH, Sabina J, Zuker M, Turner DH. 1999. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288: 911-940.
- Miller MA, Pfeiffer W, Schwartz T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees Gateway Computing Environments Workshop (GCE), IEEE 1-8.
- Nylander JAA. 2004. MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.
- Papeschi AG, Cohen RG, Pastorino XI, Amat F. 2000. Cytogenetic proof that the brine shrimp *Artemia franciscana* (Crustacea,

Branchiopoda) is found in Argentina *Hereditas* 133: 159-166.

- Parraguez M, Gajardo G, Beardmore JA. 2009. The New World *Artemia* species A. franciscana and A. persimilis are highly differentiated for chromosome size and heterochromatin content. *Hereditas* 146: 93-103.
- Pilla EJS, Beardmore JA. 1994. Genetic and morphometric differentiation in old world bisexual species of *Artemia* (the brine shrimp). *Heredity* 73: 47-56.
- Price TD, Bouvier MM. 2002. The evolution of F1 postzygotic incompatibilities in birds. *Evol* 56: 2083-2089.
- Rambaut A. 2012. FigTree (version 1.4.0). Available at

http://tree.bio.ed.ac.uk/software/figtree/.

- Reblova M, Untereiner WA, Reblova K. 2013. Novel evolutionary lineages revealed in the chaetothyriales (Fungi) based on multigene phylogenetic analyses and comparison of ITS secondary structure. *PLoS ONE* 8: e63547
- Reuter JS, Mathews DH. 2010. RNA structure: software for RNA secondary structure prediction and analysis. *BMC Bioinformatics* 11: 129.
- Ruiz O, Amat F, Saavedra C, Papeschi A, Cohen RG, Baxevanis AD, Kappas I, Abatzopoulos TJ, Navarro JC. 2008. Genetic characterization of argentinean *Artemia* species with different fatty acid profiles. *Hydrobiologia* 610: 223-234.
- Seehausen O. 2004. Hybridization and adaptive radiation. *Trends Ecol Evol* 19: 198-206.
- Seibel P, Muller T, Dandekar T, Schultz J, Wolf M. 2006. 4SALE-a tool for synchronous RNA sequence and secondary structure alignment and editing. *BMC Bioinformatics* 7: 498.
- Sun P, Clamp C, Xu D. 2010. Analysis of the secondary structure of ITS transcripts in peritrich ciliates (Ciliophora, Oligohymenophorea): Implications for structural evolution and phylogenetic reconstruction. *Mol Phylogenet Evol* 56: 242-251.
- Sun Y, Zhong YC, Song WQ, Zhang RS, Chen RY. 1999. Detection of genetic relationships among four *Artemia* species using randomly amplified polymorphic

DNA (RAPD). Int J Salt Lake Res 8: 139-147.

- Tamura K, Stecher G, Peterson D, Filipski A, Kuma, S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. *Mol Biol Evol* 30: 2725-2729.
- Triantaphyllidis GV, Criel GRJ, Abatzopoulos TJ, Sorgeloos P. 1997. International study on *Artemia*. LIII. Morphological study of *Artemia* with emphasis to old world strains.
 I. Bisexual populations. *Hydrobiologia* 357: 139-153.
- Vikas PA, Sajeshkumar NK, Thomas PC, Chakraborty K, Vijayan KK. 2012. Aquaculture related invasion of the exotic *Artemia franciscana* and displacement of the autochthonous *Artemia* populations from the hypersaline habitats of India. *Hydrobiologia* 684: 129-142.
- Wang P, Gaao F, Huang J, Strüder-Kypke M, Yi Z. 2015. A case study to estimate the applicability of secondary structures of SSU-rRNA gene in taxonomy and phylogenetic analyses of ciliates. *Zool Scr* 44: 574-585.
- Wolf M, Ruderisch B, Dandekar T, Schultz J, Muller T. 2008. ProfDistS: (profile-) distance based phylogeny on sequencestructure alignments. *Bioinformatics* 24: 2401-2402.
- Yosefzadeh H, Hosseinzadeh Colagar A, Tabari M, Sattarian A, Assadi M. 2012 Utility of ITS region sequence and structure for molecular identification of Tilia species from Hyrcanian forests, Iran. *Plant Syst Evol* 298: 947-961.
- Zheng B, Sun SC. 2013. Review of the biogeography of Artemia Leach, 1819 (Crustacea: Anostraca) in China. Int J Artemia Biol 3: 20-50.
- Zuker M. 1989. On finding all suboptimal foldings of an RNA molecule. *Science* 244: 48-52.
- Zuker M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. *Nucleic Acids Res* 31: 3406-3415.
- Zuñiga O, Wilson R, Amat F, Hontoria F. 1999. Distribution and characterization of Chilean populations of the brine shrimp *Artemia* (Crustacea, Branchiopoda, Anostraca). *Int J Salt Lake Res* 8: 23-40.